Please wait a minute...
J4  2012, Vol. 46 Issue (7): 1157-1161    DOI: 10.3785/j.issn.1008-973X.2012.07.001
机械与能源工程     
基于压脚位移补偿的机器人制孔锪窝深度控制
费少华1,方强1,孟祥磊2,柯映林1
1. 浙江大学 机械工程学系,浙江 杭州 310027; 2. 西安飞机工业(集团)有限责任公司,陕西 西安 710089
Countersink depth control of robot drilling based on pressure
foot displacement compensation
FEI Shao-hua1,FANG Qiang1,MENG Xiang-lei2,KE Ying-lin1
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
2. AVIC Xi’an Aircraft Industry (Group) Limited Company, Xian 710089, China
 全文: PDF  HTML
摘要:

为了解决机器人自动制孔过程中由于飞机壁板变形和振动引起的锪窝深度控制问题,提出将终端执行器压脚位移作为实时补偿信号的制孔进给轴全闭环控制系统设计方法;根据制孔过程中压脚振动的实际频率特性,引入低通滤波器,考虑飞机壁板锪窝深度精度要求确定截止频率,有效抑制压脚高频振荡对进给轴位置精度的影响,保证锪窝深度以及加工孔的表面质量.在材料为铝合金的圆弧工件和平面工件上,分别加工直径为5.8 和9.8 mm的孔.实验结果表明,该系统可将加工孔的锪窝深度误差控制在0.02 mm以内,表面粗糙度达到0.8 μm.

Abstract:

A method of full closed loop control system design for end effector's feed shaft was presented in order to ensure the countersink depth of robot drilling caused by the deformation and vibration of the aircraft's panels. The displacement of end effector's pressure foot was added to countersink depth as real-time compensation. A lowpass filter was introduced to restrain the interference of high frequency vibration to feed shaft's positioning accuracy according to the vibration frequency characteristics of the pressure foot during the drilling process. Its cutoff frequency was determined by the countersink depth accuracy of the aircraft's panels, and thereby the countersink depth was ensured and the high hole quality was achieved. Drilling with hole diameter 5.8 mm and 9.8 mm on arc and flat aluminum alloy workpiece respectively, the hole quality turned out to be very accurate, with the countersink depth variation at 0.02 mm in the worst case and the surface roughness reaching 0.8 μm.

出版日期: 2012-07-01
:  TP 273  
基金资助:

中央高校基本科研业务费专项资金资助项目(2011FZA.4002).

通讯作者: 方强, 男, 副教授.     E-mail: fangqiang@zju.edu.cn
作者简介: 费少华(1986-), 男, 硕士生, 从事控制工程研究. E-mail: f307110@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.

FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation. J4, 2012, 46(7): 1157-1161.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.07.001        http://www.zjujournals.com/eng/CN/Y2012/V46/I7/1157

[1] 许国康. 自动钻铆技术及其在数字化装配中的应用[J]. 航空制造技术, 2005 (6): 45-49.
XU Guokang. Automatic drilling riveting technology and it’s application in digital assemble [J]. Aeronautical Manufacturing Technology, 2005 (6): 45-49.

[2] ATKINSON J, HARTMANN J, JONES S, et al. Robotic drilling system for 737 aileron [C]∥ SAE 2007 AeroTech Congress and Exhibition, Robotics and Component Assy (Part A). Warrendale: SAE, 2007-01-3821.
[3] LIANG Jie, BI Shusheng. Design and experimental study of an end effector for robotic drilling [J]. International Journal of Advanced Manufacturing Technology, 2010(50): 399-407.
[4] BI Shusheng, LIANG Jie. Robotic drilling system for titanium structures [J]. International Journal of Advanced Manufacturing Technology, 2011 (54): 767-774.
[5] OLSSON T, HAAGE M, KIHLMAN H, et al. Costefficient drilling using industrial robots with highbandwidth force feedback [J]. Robotics and ComputerIntegrated Manufacturing, 2010 (26): 24-38.
[6] DEVLIEG R. ONCE (onesided cell end effector) robotic drilling system [C]∥ SAE 2002 Automated Fastening Conference and Exposition. Warrendale: SAE, 2002-01-2626.
[7] 黄席椿, 高顺泉. 滤波器综合法设计原理[M]. 北京:人民邮电出版社,1977: 144-145.
[8] 卢文祥,杜润生. 机械工程测试·信息·信号分析[M]. 武汉:华中科技大学出版社,1999: 141-144.
[9] WILLIAM A, TAYLOR F. Electronic filter design handbook [M]. Beijing: Science Press, 2006: 30-33.
[10] EILLIS G. Control system design guide [M]. Beijing: Publishing House of Electronics Industry, 2004: 133-136.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[7] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[14] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[15] 邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.