Please wait a minute...
J4  2011, Vol. 45 Issue (9): 1636-1642    DOI: 10.3785/j.issn.1008-973X.2011.09.021
机械工程     
基于互相关信息的非参数变换立体匹配算法
赖小波,朱世强
浙江大学 流体传动与控制国家重点实验室,浙江 杭州 310027
Mutual information based non-parametric
transform stereo matching algorithm
LAI Xiao-bo , ZHU Shi-qiang
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对传统的非参数变换立体匹配算法实时性不强和可靠性不高的局限性,提出一种基于互相关信息的非参数变换立体匹配算法.将变换窗口内所有像素的灰度值进行平均,然后将平均值作为中心像素的灰度值;为了在立体匹配时能够考虑像素间的互相关信息,将变换窗口各邻域与中心像素的相对位置大于一个单位的像素,其灰度值用双线性插值后的灰度值替代;将变换窗口的像素灰度值进行非参数变换立体匹配,得到致密的视差图.实验结果表明:与其他基于局部的单一立体匹配算法相比,该算法得到的误匹配像素百分比与其他算法相当,能够有效提高传统非参数变换立体匹配算法的鲁棒性.

Abstract:

Aiming at the limitations of the weak real-time and the low reliability in the traditional non-parametric transform stereo matching algorithms, a mutual information based non-parametric transform stereo matching algorithm was proposed. Gray values of all the pixels in the transform window were averaged, and then the mean value was taken as the gray value of the center pixel. In order to take the pixels' mutual information into consideration while finding stereo correspondence, the original gray value of the neighborhood pixels whose the relative position was one unit greater than that of the center pixel was replaced by the gray value through bilinear interpolation. The non-parametric transform of the gray values of the pixels in the transform window was implemented, and a dense map was obtained. The experimental results indicate that compared with other single area-based matching algorithms, the percentage of bad matching pixels is nearly equivalent to other algorithms while it can improve the robustness of the traditional non-parametric transform stereo matching approaches effectively.

出版日期: 2011-09-01
:  TP 391.41  
基金资助:

国家重点实验室资助项目.

通讯作者: 朱世强,男,教授,博导.     E-mail: robotlab@zju.edu.cn
作者简介: 赖小波(1981-),男,博士生,从事双目立体视觉和模式识别等方面的研究.E-mail:shopo@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.

LAI Xiao-bo , ZHU Shi-qiang. Mutual information based non-parametric
transform stereo matching algorithm. J4, 2011, 45(9): 1636-1642.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.09.021        https://www.zjujournals.com/eng/CN/Y2011/V45/I9/1636

[1] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two_frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.
[2] ZITNICK C L, KANG S B. Stereo for imagebased rendering using image oversegmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65.
[3] KLAUS A, SORMANN A, KAMER K. Segmentbased Stereo matching using belief propagation and a selfadapting dissimilarity measure[C]∥IEEE International Conference on Pattern Recognition. Hong Kong:IEEE, 2006: 15-18.
[4] 管业鹏, 顾伟康. 基于灰度相关复峰集立体匹配法[J]. 浙江大学学报: 工学版, 2005, 39(4): 522-525.
GUAN Yepeng, GU Weikang. Gray correlation multipeak set based stereo matching algorithm[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(4): 522-525.
[5] BIRCHFIELD S, TOMASI C. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406.
[6] VEKSLER O. Stereo correspondence by dynamic programming on a tree[C]∥IEEE International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005, 2: 384-390.
[7] WANG L, LIAO M, GONG M, et al. Highquality realtime stereo using adaptive cost aggregation and dynamic programming[C]∥Proceedings of Third International Symposium on 3D Data Processing, Visualization, and Transmission. Chapel Hill: IEEE, 2006: 798-805.
[8] 郭大波, 卢朝阳, 焦卫东, 等. 遮挡检测/立体匹配中的分段动态规划法[J]. 电子学报, 2009, 37(7): 1516-1520.
GUO Dabo, LU Zhaoyang, JIAO Weidong, et al. Dynamic programming in segments for occlusion detection/stereo matching[J]. ACTA ELECTRONICA SINICA, 2009, 37(7): 1516-1520.
[9] KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts[C]∥IEEE International Conference on Computer Vision. Vancouver: IEEE, 2001: 508-515.
[10] 张令涛, 曲道奎, 徐方. 一种基于图割的改进立体匹配算法[J]. 机器人, 2010, 32(1): 104-108.
ZHANG Lingtao, QU Daokui, XU Fang. An improved stereo matching algorithm based on graph cuts[J]. Robot, 2010, 32(1): 104-108.
[11] YANG Q, WANG L, AHUJA N. A constantspace belief propagation algorithm for stereo matching[C]∥IEEE International Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 298-305.
[12] 徐彦泓, 朱云芳, 杜歆, 等. 非参数立体匹配算法的FPGA实现[J]. 浙江大学学报: 工学版, 2009, 43(2): 250-254.
XU Yanhong, ZHU Yunfang, DU Xin, et al. FPGA implementation of nonparametric stereo matching algorithm[J]. Journal of Zhejiang University: Engineering Science, 2009, 43(2): 250-254.
[13] ZABIH R, WOODFILL J. Nonparametric local transforms for computing visual correspondence[C]∥IEEE International Conference on Computer Vision. Vancouver: IEEE, 1994: 151-158.
[14] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341.
[15] NALPANTIDIS L, GASTERATOS A. Stereo vision for robotic applications in the presence of nonideal lighting conditions[J]. Image and Vision Computing, 2010, 28(6): 940-951.
[16] WANG Z, ZHENG Z. A region based stereo matching algorithm using cooperative optimization[C]∥IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008: 1-8.
[17] OLAGUE G, FEMANDEZ F, PEREZ C B, et al. The infection algorithm: an artificial epidemic approach for dense stereo correspondence[J]. Springer Berlin, 2006, 3242: 622-632.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[6] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[11] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[12] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.