Please wait a minute...
J4  2012, Vol. 46 Issue (2): 280-285    DOI: 10.3785/j.issn.1008-973X.2012.02.016
计算机技术     
基于无线惯性传感器的人体动作捕获方法
李启雷1, 金文光2, 耿卫东3
1.浙江大学 软件学院,浙江 杭州 310027;
2.浙江大学 信息与电子工程系,浙江 杭州 310027;
3.浙江大学 CAD&CG国家重点实验室,浙江 杭州 310027  
Human motion capture using wireless inertial sensors
Qi lei1, JIN Wen-guang2, GENG Wei-dong3
1. College of Software Technology, Zhejiang University, Hangzhou 310027,China;
2. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
3. State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为解决光学式动作捕捉设备成本高昂和操作复杂的问题,提出一种通过佩戴在用户身体上的无线惯性传感器进行人体动作数据捕获的方法.在用户身体的各个运动部位绑定多个由加速度和磁通传感器构成的无线惯性传感器单元,传感器通过无线信号发送运动传感数据到计算机端,应用优化算法计算惯性传感单元的三维朝向信息,最后将四元数与动画角色的骨骼绑定后生成人体动作数据.为了解决运动过程中的行走导致的骨架根节点移动问题,利用地形参数反向计算和调整角色骨架根节点位置,使生成的动作符合地形和环境要求,达到真实自然的运动效果.实验结果表明,使用无线惯性传感器进行人体动作捕获得到的动作数据准确度高,朝向计算方法运行速度快,能够满足实时性应用的要求,同时显著降低动作捕获的成本和使用复杂度.

Abstract:

Human motion capture is an important technology in the threedimensional character animation production. Since the motion capture process is very expensive and complex, in this paper we introduce a new method that captures the human motion data from the inertial motion sensors attached to the user’s limbs. The user wears multiple wireless inertial motion sensors with accelerometer and magnetometer, and the sensor data are sent to the computer using the wireless sensor network. LevenbergMarquardt based optimization algorithm is applied to estimate the threedimensional orientation of the inertial sensor and then bind the obtained orientation quaternion to the skeleton of the animation character. The root position of the animation character is modified inversely from the relative status of the supporting leg and the ground in order to make the walking motion more realistic. The experimental results show that our method can capture the user’s motion effectively and produce accurate and realistic motion capture data.

出版日期: 2012-03-20
:  TP 391.41  
基金资助:

国家自然科学基金资助项目(60633070)

通讯作者: 耿卫东,男,教授,博导     E-mail: gengwd@zju.edu.cn
作者简介: 李启雷(1982—),男,博士生,主要从事三维计算机动画技术、动作捕捉技术以及体感人机交互技术等方向研究,E-mail: liqilei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.

Qi lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors. J4, 2012, 46(2): 280-285.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.02.016        http://www.zjujournals.com/eng/CN/Y2012/V46/I2/280

[1] HSU E, GENTRY S, POPOVIC J. Examplebased control of human motion [C]∥ Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Grenoble, France: Eurographics Association, 2004: 69-77.
[2] LEE J, CHAI J, REITSMA P S, et al. Interactive control of avatars animated with human motion data [C]∥ Proceedings of the 29th annual conference on Computer graphics and interactive techniques. San Antonio, Texas: ACM, 2002: 491-500.
[3] MAES P, DARRELL T, BLUMBERG B, et al. The ALIVE system: wireless fullbody interaction with autonomous agents [J]. ACM Multimedia Systems, 1997, 5: 105-112.
[4] BLACKBURN J, RIBEIRO E. Human motion recognition using isomap and dynamic time warping [C]∥ Proceedings of the 2nd conference on Human motion. Rio de Janeiro, Brazil: SpringerVerlag, 2007: 285-298.
[5] ISHIGAKI S, WHITE T, ZORDAN VB, et al. Performancebased control interface for character animation [J]. ACM Transactions on Graphics, 2009, 28: 1-8.
[6] CHAI J, HODGINS J K. Performance animation from lowdimensional control signals [C]∥ Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. Los Angeles, California: ACM, 2005: 686-696.
[7] LEE J, HA I. Sensor Fusion and Calibration for Motion Captures using Accelerometers [C]∥ Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, United states: IEEE, 1999: 1954-1959.
[8] MIZELL D. Using gravity to estimate accelerometer orientation [C]∥ Proceedings of the 7th IEEE International Symposium on Wearable Computers. New York, USA: IEEE, 2003: 252-258.
[9] SHIRATORI T, HODGINS J. Accelerometerbased user interfaces for the control of a physically simulated character [J]. ACM Transactions on Graphics, 2008, 27: 1-9.
[10] MANTYJARVI J, HIMBERG J, SEPPANEN T. Recognizing human motion with multiple acceleration sensors [C]∥ Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Tucson, United states: IEEE, 2001: 747-752.
[11] SLYPER R, HODGINS J. Action capture with accelerometers [C]∥ ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Dublin, Ireland: ACM, 2008: 193-199.
[12] DONG W, LIM K Y, GOH Y K, et al. A lowcost motion tracker and its error analysis [C]∥ IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008: 311-316.
[13] LYMPOURIDES V, ARVIND D K, PARKER M. Fully wireless, full body 3D motion capture for improvisational performances [C]∥ In Proceedings of the Workshop on Whole Body Interaction. Boston, USA: ACM, 2009: 221-233.
[14] SAKAGUCHI T, SATO K, INOKUCHI S. Human Motion Capture by Integrating Gyroscopes and Accelerometers [C]∥ IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Washington, USA: IEEE, 1996: 470-475.
[15] BACHMANN E R, MCGHEE R B, YUN X, et al. Inertial and magnetic posture tracking for inserting humans into networked virtual environments [C]∥ Proceedings of the ACM symposium on Virtual reality software and technology. Baniff, Canada: ACM, 2001: 9-16.
[16] BRUDERLIN A, WILLIAMS L. Motion signal processing [C]∥ Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. Los Angeles, USA: ACM, 2005: 97-104.
[17] HASENFRATZ J, LAPIERRE M, SILLION F. A realtime system for full body interaction with virtual worlds [C]∥ Eurographics Symposium on Virtual Enviroments. Grenoble, France: The Eurographics Association, 2004: 147-156.
[18] MADSEN K, NIELSEN H B, TINGLEFF O. Methods for nonlinear least squares problems [M]. Lyngby: Technical University of Denmark Press, 2004: 44-58.
[19] NOCEDAL J, WRIGHT S J. Numerical optimization [M]. New York: Springer, 1999: 359-365.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[6] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[7] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[8] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[9] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[10] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[11] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[12] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.