Please wait a minute...
J4  2010, Vol. 44 Issue (11): 2203-2208    DOI: 10.3785/j.issn.1008973X.2010.11.029
生物医学工程     
考虑小波系数相关性的超声图像降噪算法
宋坤坡1, 夏顺仁1, 徐清2
1.浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027;2. 浙江大学 校医院,浙江 杭州 310027
Algorithm considering correlation of wavelet coefficients for
ultrasound image denoising
SONG Kun-po1, XIA Shun-ren1, XU Qing2
1.The Key Laboratory of Biomedical Engineering of Ministry of Education,Hangzhou 310027,China;
2. The Hospital of Zhejiang University,Hangzhou 310027,China
 全文: PDF  HTML
摘要:

为了抑制超声图像中的斑点噪声,提出一种考虑小波系数尺度间相关性的超声图像降噪算法.该算法采用Rayleigh分布对超声图像斑点噪声的统计特性建模和Laplacian 分布对小波系数的统计特性进行建模,进而利用贝叶斯最大后验的方法获得对无噪图像的估计.为了更好地保留图像细节,在阈值计算过程中,该算法通过考虑下一尺度对应的小波系数来构造一个尺度间相关因子.实验结果表明,所提出算法在有效减少斑点噪声的同时,更好地保持了图像边缘和细节.

Abstract:

In order to suppress the speckle noise in ultrasound image, an algorithm considering the inter-scale correlation of wavelet coefficients was proposed. The algorithm used the Rayleign distribution to model the statistics of the speckle noise, and the Laplacian distribution was used to model the statistics of the wavelet coefficients of ultrasound image, and the estimation of the noise-free image through Bayesian maximum a posteriori was finally obtained. In order to preserve the details better, an inter-scale correlation factor was adopted in the calculation of the threshold, which was constructed by considering corresponding wavelet coefficients in the next scale. Experiments show that the proposed algorithm suppresses speckle noise well, while retaining the edges and details much better.

出版日期: 2010-12-23
:  TP 391.41  
基金资助:

国家安全重大基础研究资助项目(5132103ZZT14B);国家自然科学基金资助项目(60772092).

通讯作者: 夏顺仁,男,教授.     E-mail: srxia@zju.edu.cn
作者简介: 宋坤坡(1985-),男,河南周口人,硕士生,从事医学图像处理的研究. E-mail: songkunpo@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.

SONG Kun-po, XIA Shun-ren, XU Qing. Algorithm considering correlation of wavelet coefficients for
ultrasound image denoising. J4, 2010, 44(11): 2203-2208.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2010.11.029        http://www.zjujournals.com/eng/CN/Y2010/V44/I11/2203

[1] PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filteration technique for medical imaging [J]. IEEE Trans Med Imaging, 2003, 22 (3): 323-331.
[2] SIMONCELLI E P, ADELSON E H. Noise removal via bayesian wavelet coring [C]∥ Proc 3rd Int Conf on Image Processing. Lausanne, Switzerland: Institute of Electrical and Electronics Engineers, 1996: 379-382.
[3] ACHIM A, BEZERIANOS A, TSAKALIDES P. Ultrasound image denoising via maximum a posteriori estimation of wavelet coefficients [C]∥ Proc IEEE EMBS 23rd Annual Int Conf. Istanbul: Institute of Electrical and Electronics Engineers, 2001: 2553-2556.
[4] GUPTA S, CHAUHAN R C, SAXENA S C. Locally adaptive wavelet domain bayesian processor for denoising medical ultrasound images using speckle modelling based on Rayleigh distribution[J]. IEEE Proc Vision Image Signal Process, 2005, 152(1): 129-135.
[5] HOU Jianhua, LIU Xiangming, XIONG Chengyi, et al. Speckle reduction algorithm for synthetic aperture radar images based on Bayesian maximum a posteriori estimation in wavelet domain [J]. Optical Engineering, 2008, 47(5), 057004.
[6] JAIN A K. Fundamental of digital image processing [M]. New Jersey: PrenticeHall,1989.
[7] CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans Image Process, 2000, 9(9):1135-1151.
[8] SENDUR L, SELESNICK I W. Bivariate shrinkage functions for restoration of images with waveletbased denoising exploiting interscale dependency [J]. IEEE Trans Signal Process, 2002, 50(11): 2744-2756.
[9] ACHIM A, TSAKALIDES P, BEZERIANOS A, SAR image denoising via Bayesian wavelet shrinkage based on heavytailed modeling [J]. IEEE Trans Geosci Remote Sens, 2003, 41(8): 1773-1784.
[10] LUISIER F, BLU T, UNSER M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding [J]. IEEE Trans Image Process, 2007, 16(3): 593-606.
[11] PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of gaussians in the wavelet domain [J]. IEEE Trans Image Process, 2003, 12(11): 1338-1351.
[12] 喻琪,夏顺仁,丛卫华,等. 基于小波系数相关性和模糊理论的声纳图像处理[J].浙江大学学报:工学报, 2008, 42(12), 2151-2155.
YU Qi, XIA Shunren, CONG Weihua, et al. Acoustic image processing based on correlation of wavelet coefficient and fuzzy theory [J]. Journal of Zhejiang University:Engineering Science, 2008, 42(12), 2151-2155.
[13] DUTT V, GREENLEAF J F. Adaptive speckle reduction filter for logcompressed BScan images [J]. IEEE Trans Med Imaging, 1996, 15(6): 802-813.
[14] AYSAL T C, BARNER K E. RayleighMaximumLikelihood filtering for speckle reduction of ultrasound images [J]. IEEE Trans Med Imaging, 2007, 26(5): 712-727.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[6] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[11] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[12] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[13] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.