| 计算机技术、控制工程 |
|
|
|
|
| 基于关系嵌入的物联网未知攻击检测方法 |
李智慧1,2( ),邓琨1,*( ),许聪源1,3 |
1. 嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001 2. 浙江理工大学 信息科学与工程学院(网络空间安全学院),浙江 杭州 310018 3. 天津大学 电气自动化与信息工程学院,天津 300072 |
|
| Method for detecting unknown IoT attack based on relational embedding |
Zhihui LI1,2( ),Kun DENG1,*( ),Congyuan XU1,3 |
1. College of Information and Engineering, Jiaxing University, Jiaxing 314001, China 2. School of Information Science and Engineering (School of Cyber Science and Technology), Zhejiang Sci-Tech University, Hangzhou 310018, China 3. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
| 1 |
DAI B, WANG Y, YE C, et al A novel method for extracting time series information of deformation area of a single landslide based on improved U-Net neural network[J]. Frontiers in Earth Science, 2021, 9: 785476
doi: 10.3389/feart.2021.785476
|
| 2 |
CHEN D, ZHANG F, ZHANG X Heterogeneous IoT intrusion detection based on fusion word embedding deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (8): 9183- 9193
doi: 10.1109/TII.2022.3227640
|
| 3 |
HE M S, HUANG Y M, WANG X L, et al A lightweight and efficient IoT intrusion detection method based on feature grouping[J]. IEEE Internet of Things Journal, 2024, 11 (2): 2935- 2949
doi: 10.1109/JIOT.2023.3294259
|
| 4 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks [C]//Proceedings of the International Conference on Machine Learning. New York: ACM, 2017: 1126-1135.
|
| 5 |
ZHUANG F, QI Z, DUAN K, et al A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109 (1): 43- 76
doi: 10.1109/JPROC.2020.3004555
|
| 6 |
WANG Y, XU C, LIU C, et al. Instance credibility inference for few-shot learning [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12833–12842.
|
| 7 |
ZHAO L, LU J, XU Y, et al. Few-shot class-incremental learning via class-aware bilateral distillation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11838–11847.
|
| 8 |
LU C M, WANG X F, YANG A M, et al A few-shot-based model-agnostic meta-learning for intrusion detection in security of Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10 (24): 21309- 21321
doi: 10.1109/JIOT.2023.3283408
|
| 9 |
SHI Z X, XING M Y, ZHANG J, et al. Few-shot network intrusion detection based on model-agnostic meta-learning with L2F method [C]//Proceedings of the IEEE Wireless Communications and Networking Conference. Glasgow: IEEE, 2023: 1–6.
|
| 10 |
YAN Y, YANG Y, GU Y, et al. A few-shot intrusion detection model for the Internet of Things [C]//Proceedings of the 3rd International Conference on Electronic Information Engineering and Computer Science. Changchun: IEEE, 2024: 531–537.
|
| 11 |
DU L, GU Z Q, WANG Y, et al A few-shot class-incremental learning method for network intrusion detection[J]. IEEE Transactions on Network and Service Management, 2024, 21 (2): 2389- 2401
doi: 10.1109/TNSM.2023.3332284
|
| 12 |
DI MONDA D, MONTIERI A, PERSICO V, et al Few-shot class-incremental learning for network intrusion detection systems[J]. IEEE Open Journal of the Communications Society, 2024, 5: 6736- 6757
doi: 10.1109/OJCOMS.2024.3481895
|
| 13 |
FINDER S E, AMOYAL R, TREISTER E, et al. Wavelet convolutions for large receptive fields [C]// Proceedings of the European Conference on Computer Vision. Madrid: Springer, 2024: 363–380.
|
| 14 |
KANG D, KWON H, MIN J, et al. Relational embedding for few-shot classification [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 8802–8813.
|
| 15 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
| 16 |
XU C, SHEN J, DU X A method of few-shot network intrusion detection based on meta-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3540- 3552
doi: 10.1109/TIFS.2020.2991876
|
| 17 |
YANG J C, LI H W, SHAO S, et al FS-IDS: a framework for intrusion detection based on few-shot learning[J]. Computers and Security, 2022, 122: 102899
doi: 10.1016/j.cose.2022.102899
|
| 18 |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning [C]//Proceedings of the Neural Information Processing Systems. Long Beach: [s. n. ], 2017: 4080-4090.
|
| 19 |
SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4135–4144.
|
| 20 |
NETO E C P, DADKHAH S, FERREIRA R, et al CICIoT2023: a real-time dataset and benchmark for large-scale attacks in IoT environment[J]. Sensors, 2023, 23 (13): 5941
doi: 10.3390/s23135941
|
| 21 |
KORONIOTIS N, MOUSTAFA N, SITNIKOVA E, et al Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: bot-IoT dataset[J]. Future Generation Computer Systems, 2019, 100: 779- 796
doi: 10.1016/j.future.2019.05.041
|
| 22 |
DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features [C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Portugal: SciTEPress, 2016: 407-414.
|
| 23 |
WANG Y, ZHANG Z, ZHAO K, et al A few-shot learning based method for industrial Internet intrusion detection[J]. International Journal of Information Security, 2024, 23 (5): 3241- 3252
doi: 10.1007/s10207-024-00889-x
|
| 24 |
ZHAO R J, GUI G, XUE Z, et al A novel intrusion detection method based on lightweight neural network for internet of things[J]. IEEE Internet of Things Journal, 2021, 9 (12): 9960- 9972
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|