Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 614-623    DOI: 10.3785/j.issn.1008-973X.2026.03.017
计算机技术、控制工程     
线控转向系统线性自抗扰控制器的群智能优化
魏萱1,2(),黄鹤1,2,*(),杨澜3,王会峰1,高涛3
1. 长安大学 电子与控制工程学院,陕西 西安 710064
2. 长安大学 西安市智慧高速公路信息融合与控制重点实验室,陕西 西安 710064
3. 长安大学 信息工程学院,陕西 西安 710064
Swarm intelligence optimization of linear active disturbance rejection controller for steer-by-wire system
Xuan WEI1,2(),He HUANG1,2,*(),Lan YANG3,Huifeng WANG1,Tao GAO3
1. School of Electronic and Control Engineering, Chang'an University, Xi’an 710064, China
2. Key Laboratory of Intelligent Expressway Information Fusion and Control, Chang’an University, Xi’an 710064, China
3. School of Information Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(2483 KB)   HTML
摘要:

针对线控转向系统中线性自抗扰控制器(LADRC)适应性差、参数调整困难的问题,提出基于多策略鹦鹉优化算法(GOGS-PO)的LADRC控制方法. 建立基于LADRC的汽车线控转向系统仿真模型. 通过4项改进策略,提升鹦鹉群智能算法的性能. 设计佳偶双栖初始化策略,提升种群分布的均匀性,增强全局探索能力. 引入动态停留因子,优化停留行为,避免局部最优. 采用黄金正弦算法,优化恐惧陌生人的行为. 融合樽海鞘优化算法的领导者机制,加速收敛. 测试函数的验证表明,GOGS-PO在收敛速度和精度上均优于对比算法. 利用GOGS-PO优化LADRC参数,提升控制性能. 仿真实验表明,在复杂工况下,基于GOGS-PO的LADRC方法相较于传统方法,前轮转角跟踪误差、横摆角速度和质心侧偏角峰值均降低,前轮转角的跟踪精度达到0.02°量级. 在统计显著性测试中,GOGS-PO-LADRC控制策略在所有的评价指标中均排名第一,具有显著性优势,证实该方法提升了车辆的操纵稳定性和动态响应性能.

关键词: 线控转向(SBW)线性自抗扰控制器(LADRC)鹦鹉算法参数整定路面附着系数    
Abstract:

A linear active disturbance rejection controller (LADRC) method based on a multi-strategy enhanced parrot optimization (GOGS-PO) algorithm was proposed in order to address the issues of poor adaptability and difficult parameter tuning of the LADRC in steer-by-wire system. A simulation model of vehicle steer-by-wire system utilizing LADRC was established. The performance of the parrot swarm intelligence algorithm was enhanced through four improvement strategies. A mated-pair initialization strategy was designed to improve population distribution uniformity and enhance global exploration capability. A dynamic residence factor was introduced to optimize staying behavior and avoid local optima. The golden sine algorithm was used to refine the fear-of-strangers behavior. The leader mechanism of the salp swarm algorithm was integrated to accelerate convergence. Validation using test functions shows that GOGS-PO outperforms comparative algorithms in both convergence speed and accuracy. The LADRC parameters were optimized by using GOGS-PO in order to improve control performance. Simulation experiments showed that the GOGS-PO-based LADRC method reduced front wheel steering angle tracking error, yaw rate, and peak sideslip angle under complex conditions compared with traditional methods, achieving front wheel steering angle tracking accuracy on the order of 0.02°. Statistical significance tests confirmed that the GOGS-PO-LADRC control strategy ranked first across all evaluation metrics with significant advantage, demonstrating that the method enhanced vehicle handling stability and dynamic response performance.

Key words: steering by wire (SBW)    linear active disturbance rejection controller (LADRC)    parrot algorithm    parameter tuning    road adhesion coefficient
收稿日期: 2025-04-09 出版日期: 2026-02-04
:  TP 301  
基金资助: 国家自然科学基金资助项目(52572353);中央高校基本科研业务费资助项目(300102325501);中国交通教育研究会教育科研课题资助项目(JT2024YB444).
通讯作者: 黄鹤     E-mail: 2113304060@qq.com;huanghe@chd.edu.cn
作者简介: 魏萱(2002—),女,硕士生,从事车辆控制的研究. orcid.org/0009-0009-0097-241X. E-mail:2113304060@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
魏萱
黄鹤
杨澜
王会峰
高涛

引用本文:

魏萱,黄鹤,杨澜,王会峰,高涛. 线控转向系统线性自抗扰控制器的群智能优化[J]. 浙江大学学报(工学版), 2026, 60(3): 614-623.

Xuan WEI,He HUANG,Lan YANG,Huifeng WANG,Tao GAO. Swarm intelligence optimization of linear active disturbance rejection controller for steer-by-wire system. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 614-623.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.017        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/614

图 1  线控转向系统的结构图
图 2  线控转向系统的工作原理
图 3  LADRC的基本结构图
图 4  SBW整车模型的结构图
图 5  GOGS-PO优化策略的流程
函数表达式取值范围
Sphere$f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {x_i^2} $[?100,100]n
Schwefel 2.22$f({\boldsymbol{x}}) = \displaystyle \sum\nolimits_{i = 1}^n {\left| {{x_i}} \right|} + \displaystyle \prod\nolimits_{i = 1}^n {\left| {{x_i}} \right|} $[?10,10]n
Schwefel 1.2$f({\boldsymbol{x}}) = {\displaystyle \sum\nolimits_{i = 1}^n {\left( {\displaystyle \sum\nolimits_{j = 1}^i {{x_j}} } \right)} ^2}$[?100,100]n
Schwefel 2.21$f({\boldsymbol{x}}) = {\max _i}\left\{ {\left| {{x_i}} \right|,1 \leqslant i \leqslant n} \right\}$[?100,100]n
Schwefel$f({\boldsymbol{x}}) = - \displaystyle \sum\nolimits_{i = 1}^n {\left( {{x_i}\sin {\sqrt {\left| {{x_i}} \right|} } } \right)} $[?500,500]n
Ackley$\begin{gathered} f({\boldsymbol{x}}) = - 20\exp \left( { - 0.2\sqrt {{n}^{-1}\sum\nolimits_{i = 1}^n {x_i^2} } } \right) - \exp \left( {{n}^{-1}\sum\nolimits_{i = 1}^n {\cos\; (2{\text{π}}{x_i}}) } \right)+20+{\text{e}} \\ \end{gathered} $[?32,32]n
表 1  算法性能测试的基准函数
图 6  测试函数的收敛曲线
图 7  GOGS-PO-LADRC的参数整定过程
参数数值
整车总质量m/kg1430
前轴到质心距离a/m1.05
后轴到质心距离b/m1.61
质心高度h/m0.65
转向电机轴转动惯量Jm/(kg?m2)0.00087
转向电机轴阻尼系数Bm/(N?m?(rad?s ?1 ) ?1)0.00021
转向电机轴扭转刚度Km/(N?m?rad?1)176
齿条质量mr/kg2.25
齿条的阻尼系数Br/(N?m?(rad?s ?1 ) ?1)635
表 2  车辆的主要参数
图 8  双移线工况的仿真曲线
图 9  湿滑路面条件下不同控制策略的仿真
图 10  冰路面条件下不同控制策略的仿真
控制策略ωmax/(rad·s?1)$ \beta_{\mathrm{max}} $/rade/(°)
PID0.3526380.02768961.26800
LADRC0.3456560.02266320.89220
PSO-LADRC0.3360770.01927350.80180
PO-LADRC0.3242530.01585510.73550
GOGS-PO-LADRC0.3177730.01477660.01981
表 3  湿滑路面上不同控制策略的仿真参数
控制策略ωmax/(rad·s?1)$ \beta _{\mathrm{max}}$/rade/(°)
PID0.1601510.01945180.41410
LADRC0.1593810.01826260.53870
PSO-LADRC0.1568550.01779650.54020
PO-LADRC0.1560940.01736650.48620
GOGS-PO-LADRC0.1558330.01707970.02122
表 4  冰路面上不同控制策略的仿真参数
图 11  湿滑路面上坡工况下的不同控制策略仿真
控制策略ωmax /(rad·s?1)$ \beta_{\mathrm{max}} $/rad
PID0.5121180.0889732
LADRC0.4141360.0595344
PSO-LADRC0.3429740.0394133
PO-LADRC0.3391480.0329730
GOGS-PO-LADRC0.3310590.0271803
表 5  湿滑路面上坡工况下不同控制策略的仿真参数
控制策略平均排名Nemenyi
分组
显著性结论
GOGS-PO-LADRC1.00A显著最优
PO-LADRC2.13A B与最优无显著差异
PSO-LADRC3.07B C中等性能
LADRC3.93C D显著次于前两名
PID4.87D显著最差
表 6  以横摆角速度峰值为评价指标的检验结果
控制策略平均排名Nemenyi 分组显著性结论
GOGS-PO-LADRC1.2A显著最优
PO-LADRC2.1A B与最优无显著差异
PSO-LADRC3.0B C中等性能
LADRC4.0C D显著次于前两名
PID4.7D显著最差
表 7  以质心侧偏角峰值为评价指标的检验结果
控制策略平均排名Nemenyi 分组显著性结论
GOGS-PO-LADRC1.2A显著最优
PO-LADRC2.5A B与最优无显著差异
PSO-LADRC2.8B C中等性能
LADRC4.0C D显著次于前两名
PID4.5D显著最差
表 8  以前轮转角误差为评价指标的检验结果
1 LIN J, ZHANG F, SU L, et al Research on variable transmission ratio control method to improve vehicle handling comfort based on steer-by-wire system[J]. Actuators, 2024, 13 (2): 48
doi: 10.3390/act13020048
2 HUANG C, LI L, WANG X Comparative study of two types of control loops aiming at trajectory tracking of a steer-by-wire system with Coulomb friction[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235 (1): 16- 31
doi: 10.1177/0954407020946972
3 MENG L, SUN C Automatic control method of automobile steering-by-wire based on fuzzy PID[J]. International Journal of Vehicle Information and Communication Systems, 2023, 8 (1/2): 1- 15
doi: 10.1504/IJVICS.2023.131596
4 JIN K, XIAO P, YANG D, et al Research on steering-by-wire system motor control based on an improved sparrow search proportional–integral–derivative algorithm[J]. Electronics, 2024, 13 (22): 4553
doi: 10.3390/electronics13224553
5 LI Y R, HUANG J M, HE Z M. A nonlinear control method of steering angle following used in steer-by-wire system [J]. Applied Mechanics and Materials, 2012, 190/191: 890–893.
6 ZHAO L, CAO Q, HU Y, et al Stability control of steer by wire system based on improved ADRC[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236 (10/11): 2283- 2293
7 夏亮, 孙天夫, 李鑫宇, 等 基于线性自抗扰控制技术的伺服控制系统研究[J]. 电气工程学报, 2023, 18 (4): 43- 49
XIA Liang, SUN Tianfu, LI Xinyu, et al Research on servo control system based on linear active disturbance rejection control technology[J]. Journal of Electrical Engineering, 2023, 18 (4): 43- 49
doi: 10.11985/2023.04.005
8 HAN D, LI C, SHI Z Attitude autopilot design based on fuzzy linear active disturbance rejection control[J]. Aerospace, 2022, 9 (8): 429
doi: 10.3390/aerospace9080429
9 XU J, GUO Y, LIU F, et al Development and experiment of semi-physical simulation platform for space manipulator[J]. Sensors, 2024, 24 (13): 4354
doi: 10.3390/s24134354
10 LIAN J, HUI G, MA L, et al Parrot optimizer: algorithm and applications to medical problems[J]. Computers in Biology and Medicine, 2024, 172: 108064
doi: 10.1016/j.compbiomed.2024.108064
11 MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163- 191
doi: 10.1016/j.advengsoft.2017.07.002
12 刘书翰, 吴晓东, 梁登宇, 等 基于转速参考模型的线控转向主动回正控制[J]. 汽车工程学报, 2025, 15 (1): 108- 115
LIU Shuhan, WU Xiaodong, LIANG Dengyu, et al Active return-to-center control for steer-by-wire systems based on a steering wheel angular speed reference model[J]. Chinese Journal of Automotive Engineering, 2025, 15 (1): 108- 115
doi: 10.3969/j.issn.2095-1469.2025.01.11
13 孙有平, 李崧, 何江美, 等 汽车线控转向系统稳定性控制策略研究[J]. 重庆理工大学学报: 自然科学, 2024, (7): 37- 43
SUN Youping, LI Song, HE Jiangmei, et al Research on the stability control strategy of vehicle steer-by-wire system[J]. Journal of Chongqing University of Technology: Natural Science, 2024, (7): 37- 43
14 HEINRICH F, KASTE J, KABIL S G, et al Methods for modeling the steering wheel torque of a steer-by-wire vehicle[J]. Automotive and Engine Technology, 2022, 7 (1): 53- 64
15 LUO S, ZHANG B, MA J, et al Research on a hierarchical control strategy for anti-lock braking systems based on active disturbance rejection control (ADRC)[J]. Applied Sciences, 2025, 15 (3): 1294
doi: 10.3390/app15031294
16 LU Z An adaptive dung beetle optimization algorithm with golden sine for optimizing numerical unconstrained problems[J]. Current Journal of Applied Science and Technology, 2024, 43 (4): 12- 20
doi: 10.9734/cjast/2024/v43i44365
17 XUE J, SHEN B Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336
doi: 10.1007/s11227-022-04959-6
18 YUAN C, ZHAO D, HEIDARI A A, et al Polar lights optimizer: algorithm and applications in image segmentation and feature selection[J]. Neurocomputing, 2024, 607: 128427
doi: 10.1016/j.neucom.2024.128427
[1] 杨钢,潘越,王照卓,徐越,李宝仁. 电液伺服系统线性自抗扰控制参数频域整定方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2034-2044.
[2] 王骏骋,王法慧. 基于变权重PSO-Elman神经网络的路面附着系数估计[J]. 浙江大学学报(工学版), 2024, 58(3): 622-634.
[3] 谢宪毅, 金立生, 高琳琳, 夏海鹏. 基于变权重系数的LQR车辆后轮主动转向控制研究[J]. 浙江大学学报(工学版), 2018, 52(3): 446-452.
[4] 盖江涛, 黄庆, 黄守道, 刘旺, 周滔滔, 潘小清. 基于模型补偿的永磁同步电机自抗扰控制[J]. J4, 2014, 48(4): 581-588.