Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1767-1774    DOI: 10.3785/j.issn.1008-973X.2025.08.024
土木工程、交通工程     
考虑多前车信息反馈的CAV混合交通流特性
路庆昌(),孟旭,刘丽萍,任永全,王世鑫
长安大学 电子与控制工程学院,陕西 西安 710064
CAV mixed traffic flow characteristics considering feedback from multiple preceding vehicles
Qingchang LU(),Xu MENG,Liping LIU,Yongquan REN,Shixin WANG
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(961 KB)   HTML
摘要:

针对当前研究忽略了CAV可跨物理限制接收多前车信息反馈特性的问题,建立考虑多前车信息反馈的I-CACC车辆跟驰模型,分析不同CAV渗透率及队列排列对混合交通流稳定性和基本图特性的影响. 构建I-CACC跟驰模型,采用多前车与主体车的间距差作为判定影响程度的标准. 基于排队强度和马尔科夫链理论,建立混合交通流的队列排列模型. 仿真分析混合交通流的队列稳定性和基本图特性. 结果表明,当CAV采用I-CACC模型,渗透率达到0.7以及队列排队强度为0.5时,混合交通流的队列稳定性最大;当渗透率大于0.7或队列排队强度大于0.5时,稳定性下降. 考虑多前车信息反馈的纯CAV交通流通行能力较纯HV流通行能力提高了3.09倍,相比于采用CACC模型的纯CAV交通流,这一提升仅为2.36倍.

关键词: 混合交通流跟驰模型排队强度稳定性基本图特性    
Abstract:

A key limitation in existing research, namely the neglect of the capability of connected and automated vehicle (CAV) was addressed in order to receive feedback from multiple preceding vehicles beyond direct physical constraints. An improved car-following model, termed I-CACC, was proposed by incorporating multi-predecessor information feedback in order to evaluate the impacts of varying CAV penetration rates and vehicle platoon configurations on mixed traffic flow stability and fundamental diagram property. The spacing differentials between multiple preceding vehicles and the subject vehicle were employed as a criterion to quantify influence weights. A platoon configuration model was developed based on platoon intensity and Markov chain theory. The platoon stability and fundamental diagram property of mixed traffic flow were simulated and analyzed. Results showed that the stability of the mixed traffic platoon was maximized when the CAV penetration rate reached 0.7 and the platoon intensity was 0.5. Stability deteriorated beyond these thresholds. The capacity of a pure CAV flow with multi-predecessor feedback increased by 3.09 times compared with that of a pure human-driven vehicle (HV) flow, whereas the improvement was limited to 2.36 times when adopting the conventional CACC model in pure CAV flow.

Key words: mixed traffic flow    car following model    platoon intensity    stability    fundamental diagram property
收稿日期: 2024-10-01 出版日期: 2025-07-28
:  U 491  
基金资助: 国家自然科学基金资助项目(52232012,72471035).
作者简介: 路庆昌(1984—),男,教授,博导,从事交通网络建模与分析、交通行为学、交通与环境、气候变化与交通系统、交通大数据挖掘的研究. orcid.org/0000-0001-9616-2271. E-mail:qclu@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
路庆昌
孟旭
刘丽萍
任永全
王世鑫

引用本文:

路庆昌,孟旭,刘丽萍,任永全,王世鑫. 考虑多前车信息反馈的CAV混合交通流特性[J]. 浙江大学学报(工学版), 2025, 59(8): 1767-1774.

Qingchang LU,Xu MENG,Liping LIU,Yongquan REN,Shixin WANG. CAV mixed traffic flow characteristics considering feedback from multiple preceding vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1767-1774.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.024        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1767

图 1  I-CACC模型信息传递过程的示意图
图 2  不同排队强度下队列排列的示意图
图 3  不同CAV渗透率下的F变化
图 4  不同渗透率下的$\overline \mu $变化
图 5  不同排队强度下的F变化
图 6  不同排队强度下的$\overline \mu $变化
图 7  混合交通流的整体稳定性变化
图 8  CAV采用CACC模型的流量-密度图
图 9  CAV采用I-CACC模型的流量-密度图
PC${k_{\mathrm{M}}}$/(PCU·km?1${C_{}}$/(PCU·h?1)${v_{\mathrm{M}}}$/
(km·h?1)
I-CACCCACCI-CACCCACC
024.7924.791738173870.128
0.325.8325.671 9231 91174.448
0.528.0927.332212215380.476
0.731.2729.232658248484.996
1.042.6637.1453844109120
表 1  不同${P_{\mathrm{C}}}$下混合交通流的基本图特性
图 10  CAV采用CACC模型的流量-密度图
图 11  CAV采用I-CACC模型的流量-密度图
PI${k_{\mathrm{M}}}$/(PCU·km?1${C_{}}$/(PCU·h?1)
I-CACCCACCI-CACCCACC
?1.024.6824.6819431943
?0.526.5926.3920942078
028.0927.3322122153
0.529.2128.0923012212
1.031.3929.4524722319
表 2  不同PI下混合交通流的基本图特性
1 BANSAL P, KOCKELMAN K M Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A: Policy and Practice, 2017, 95: 49- 63
doi: 10.1016/j.tra.2016.10.013
2 路庆昌, 秦汉, 刘鹏, 等 基于MFD的快速路新型混合交通流特性分析[J]. 东南大学学报: 自然科学版, 2023, 53 (5): 905- 914
LU Qingchang, QIN Han, LIU Peng, et al Characteristic analysis on MFD-based new mixed traffic flow on expressways[J]. Journal of Southeast University: Natural Science Edition, 2023, 53 (5): 905- 914
3 秦严严, 王昊, 冉斌 CACC 车辆跟驰建模及混合交通流分析[J]. 交通运输系统工程与信息, 2018, 18 (2): 60- 65
QIN Yanyan, WANG Hao, RAN Bin Vehicle following modeling and mixed traffic flow analysis with CACC[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (2): 60- 65
4 宋成举 协同自适应巡航控制车辆跟驰模型优化及仿真分析[J]. 武汉理工大学学报: 交通科学与工程版, 2021, 45 (6): 1029- 1033
SONG Chengju Optimization and simulation analysis of vehicle following model for collaborative adaptive cruise control[J]. Journal of Wuhan University of Technology: Traffic Science and Engineering Edition, 2021, 45 (6): 1029- 1033
5 LI R, SUN S, WU Y, et al Fundamental diagram of mixed traffic flow considering time lags, platooning intensity, and the degradation of connected automated vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2023, 627: 129130
doi: 10.1016/j.physa.2023.129130
6 宋慧, 曲大义, 王少杰, 等 考虑多车响应的网联混行车流跟驰模型及稳态分析[J]. 吉林大学学报: 工学版, 2024, 54 (11): 3220- 3230
SONG Hui, QU Dayi, WANG Shaojie, et al Connected mixed traffic flow car-following model and stability analysis considering multiple vehicles response[J]. Journal of Jilin University: Engineering and Technology Edition, 2024, 54 (11): 3220- 3230
7 孙启鹏, 武智刚, 曹宁博, 等 基于风险预测的自动驾驶车辆行为决策模型[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1761- 1771
SUN Qipeng, WU Zhigang, CAO Ningbo, et al Decision-making model of autonomous vehicle behavior based on risk prediction[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1761- 1771
8 WANG S Y, YU B, WU M Y MVCM car-following model for connected vehicles and simulation-based traffic analysis in mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 5267- 5274
9 XIE D F, ZHAO X M, HE Z B Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (6): 2060- 2071
doi: 10.1109/TITS.2018.2857465
10 ZONG F, WANG M, TANG M, et al An improved intelligent driver model considering the information of multiple front and rear vehicles[J]. IEEE Access, 2021, 9: 66241- 66252
doi: 10.1109/ACCESS.2021.3072058
11 GHIASI A, HUSSAIN O, QIAN Z S, et al A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266- 292
doi: 10.1016/j.trb.2017.09.022
12 YAO Z, WU Y, WANG Y, et al Analysis of the impact of maximum platoon size of CAVs on mixed traffic flow: an analytical and simulation method[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103989
doi: 10.1016/j.trc.2022.103989
13 ZHOU J, ZHU F Analytical analysis of the effect of maximum platoon size of connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102882
doi: 10.1016/j.trc.2020.102882
14 JIANG Y S, ZHU F Y, GU Q F, et al Influence of CAVs platoon characteristics on fundamental diagram of mixed traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 2023, 624: 128906
doi: 10.1016/j.physa.2023.128906
15 曹宁博, 陈家辉, 赵利英 智能网联车和人驾车辆混合交通流排队长度估计模型[J]. 浙江大学学报: 工学版, 2024, 58 (9): 1935- 1944
CAO Ningbo, CHEN Jiahui, ZHAO Liying Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (9): 1935- 1944
16 PLOEG J, SEMSAR-KAZEROONI E, LIJSTER G, et al Graceful degradation of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (1): 488- 497
doi: 10.1109/TITS.2014.2349498
17 CI Y, WU H, SUN Y, et al A prediction model with wavelet neural network optimized by the chicken swarm optimization for on-ramps metering of the urban expressway[J]. Journal of Intelligent Transportation Systems, 2022, 26 (3): 356- 365
doi: 10.1080/15472450.2021.1890070
18 TREIBER M, HENNECKE A, HELBING D Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62 (2): 1805- 1824
doi: 10.1103/PhysRevE.62.1805
19 WARD J A. Heterogeneity, lane-changing and instability in traffic: a mathematical approach [D]. Bristol: University of Bristol, 2009.
[1] 叶身村,周兵,柴天,干年妃,贺帅. 不可避撞场景下的车辆碰撞损伤最小化策略[J]. 浙江大学学报(工学版), 2025, 59(2): 362-374.
[2] 刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.
[3] 曹宁博,陈家辉,赵利英. 智能网联车和人驾车辆混合交通流排队长度估计模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1935-1944.
[4] 陈廷国,郭召迪. 具有杆间扭转约束的轴心压杆稳定性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 598-605.
[5] 王冠中,王奕鑫,但扬清,何英静,吴浩. 直流多馈入系统电压稳定主导模式定性分析[J]. 浙江大学学报(工学版), 2023, 57(3): 616-624.
[6] 庄启彬,张焕彬,刘志荣,朱睿. 不同构型潜射航行器倾斜出水流场演化特性[J]. 浙江大学学报(工学版), 2023, 57(1): 200-208.
[7] 潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.
[8] 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测[J]. 浙江大学学报(工学版), 2022, 56(4): 692-701.
[9] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[10] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[11] 汪佳佳,蔡英凤,陈龙,汪少华,施德华. 基于扩张状态观测器估计的混合动力汽车协调控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1225-1233.
[12] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[13] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[14] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[15] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.