Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1935-1944    DOI: 10.3785/j.issn.1008-973X.2024.09.018
交通工程     
智能网联车和人驾车辆混合交通流排队长度估计模型
曹宁博1(),陈家辉2,赵利英3,*()
1. 长安大学 运输工程学院,陕西 西安 710061
2. 西北工业大学 自动化学院,陕西 西安 710129
3. 西安理工大学 经济与管理学院,陕西 西安 710048
Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles
Ningbo CAO1(),Jiahui CHEN2,Liying ZHAO3,*()
1. College of Transportation Engineering, Chang’an University, Xi’an 710061, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
3. School of Economics and Management, Xi’an University of Technology, Xi’an 710048, China
 全文: PDF(1328 KB)   HTML
摘要:

为了解决智能网联车(ICVs)和人驾车辆(HDVs)混行交叉口的排队估计问题,提出基于概率统计和贝叶斯定理的排队长度估计模型. 综合考虑队列中智能网联车位置、速度和渗透率等因素,分别构建可观测队列排队长度估计模型、不可观测队列排队长度估计模型和渗透率估计模型,通过迭代实现排队长度和渗透率的实时估计. 利用随机种子模拟不同渗透率条件下智能网联车在队列中的分布特征,分析不同交通条件下模型的估计精度. 与已有模型的对比表明,在智能网联车低渗透率(10%)条件下,在非高峰时段,本研究模型、已有模型的平均绝对百分比误差(MAPE)分别为29.35%、59.68%;在高峰时段,本研究模型、已有模型的MAPE分别为26.50%、34.66%. 在智能网联车高渗透率条件下(90%),在非高峰时段,本研究模型、已有模型的MAPE分别为6.90%、17.85%;在高峰时段,本研究模型、已有模型的MAPE分别为1.45%、1.05%,误差接近. 本研究所提出的排队估计模型在低渗透率和高渗透率条件下均具有更好的估计精度.

关键词: 混合交通流智能网联车贝叶斯定理轨迹数据排队长度估计    
Abstract:

A dynamic queue length estimation model based on probability statistics and Bayesian theorem was proposed, to solve the problem of queue length estimation at intersections with mixed traffic of intelligent connected vehicles (ICVs) and human-driven vehicles (HDVs). Firstly, taking into account factors such as the position, speed, and penetration rate of ICVs in the queue, models for estimating the queue lengths of observable and unobservable queues, as well as the penetration rate, were constructed. Real-time estimation of queue lengths and penetration rate was achieved through iteration. Then, the distribution characteristics of ICVs in the queue under different penetration rate conditions were simulated using random seeds. The estimation accuracy of the model under different traffic conditions was analyzed. Comparison analysis with existing models showed that, under low penetration rate conditions of ICVs (10%) during off-peak hours, the average absolute percentage error (MAPE) of the proposed model was 29.35%, while the existing model had an MAPE of 59.68%; during peak hours, the MAPE of this model was 26.50%, compared to 34.66% for the existing model. Under high penetration rate conditions of ICVs (90%) during off-peak hours, the MAPE of this model was 6.90%, while the existing model had an MAPE of 17.85%; during peak hours, the MAPE of this model was 1.45%, compared to 1.05% for the existing model, with similar errors. The proposed queue estimation model for mixed traffic of ICVs and human-driven vehicles has better estimation accuracy under both low and high penetration rate conditions.

Key words: mixed traffic flow    intelligent connected vehicle    Bayesian theorem    trajectory data    queue length estimation
收稿日期: 2023-07-29 出版日期: 2024-08-30
CLC:  U 491  
基金资助: 陕西省自然科学基础研究计划(青年项目)资助项目(2023-JC-QN-0531);陕西省自然科学基础研究计划(面上项目)资助项目(2024JC-YBMS-376);陕西省社会科学基金资助项目(2022R028,2021R025);陕西省自然科学基金资助项目(2022JM-426).
通讯作者: 赵利英     E-mail: caonb@chd.edu.cn;lyzhao@xaut.edu.cn
作者简介: 曹宁博(1987—),男,讲师,从事自动驾驶汽车和行人安全研究. orcid.org/0000-0002-6630-0466. E-mail:caonb@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹宁博
陈家辉
赵利英

引用本文:

曹宁博,陈家辉,赵利英. 智能网联车和人驾车辆混合交通流排队长度估计模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1935-1944.

Ningbo CAO,Jiahui CHEN,Liying ZHAO. Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1935-1944.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1935

图 1  车辆排队过程观察示意图
图 2  排队长度估计模型构建和验证流程图
图 3  排队状态简化示意图
条件${P_{\text{e}}} $
G=0G=1G=2G=3G=4G=5
$\lambda = 3,p = 10 $%0.160.230.170.120.090.06
$\lambda = 3,p = 20 $%0.310.340.170.090.050.02
$\lambda = 3,p = 30 $%0.440.370.130.040.010.01
$\lambda = 3,p = 40 $%0.560.350.070.020.000.00
$\lambda = 3,p = 50 $%0.660.300.040.000.000.00
$\lambda = 4,p = 10 $%0.200.280.180.120.080.05
$\lambda = 4,p = 20 $%0.370.370.150.060.030.01
$\lambda = 4,p = 30 $%0.510.370.090.020.010.00
$\lambda = 4,p = 40 $%0.630.320.040.010.000.00
$\lambda = 4,p = 50 $%0.730.250.020.000.000.00
表 1  队列误差概率
图 4  交叉口数据选取示意图
图 5  排队长度估计流程
开始时间$C$/s${N^{\text{C}}}$${T_{\text{g}}}$/s${\text{Lane1}}$${\text{Lane2}}$${\text{Lane3}}$
14:3016746465.765.715.70
18:2016743469.4910.1910.47
表 2  排队长度调查数据
${N^{{\text{All}}}}$${N^{{\text{ICV}}}}$${N^{{\text{HDV}}}}$$p$/%$\widehat p$/%
77715662120.0719.03
表 3  渗透率估计结果
图 6  基于本研究模型的非高峰和高峰时段MAPE
时段seed${Q_{{\text{a}}}} $$\bar {{Q_{{\text{a}}}}} $${Q_{{\text{p}}}} $$ \bar{{ Q_{{\text{p}}}}} $MAEA-MAEMAPE
/%
A-MAPE
/%
14:30—
16:30
(非高峰)
85.635.634.534.461.101.1719.6120.86
105.634.311.3223.38
125.634.531.1019.58
18:20—
20:20
(高峰)
810.0310.038.848.591.1911.8314.33
1010.038.581.451.4414.46
1210.038.361.6716.68
表 4  基于本研究模型的估计排队长度
图 7  基于本研究模型的非高峰和高峰时段MAPE($p = 20\text{%} $)
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
105.633.981.6529.359.90
205.634.081.5427.4718.28
305.634.211.4125.0929.60
505.634.920.7012.4854.24
805.635.070.559.8978.63
905.635.240.386.9092.02
表 5  不同渗透率下基于本研究模型的非高峰时段估计排队长度
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
1010.037.372.6626.5010.12
2010.037.862.1721.6521.36
3010.038.141.8918.8528.64
5010.039.310.727.1650.95
8010.039.730.303.0379.59
9010.039.880.151.4590.51
表 6  不同渗透率下基于本研究模型的高峰时段估计排队长度
图 8  基于贝叶斯定理的非高峰和高峰时段MAPE($p = 20\text{%} $)
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
105.638.993.3659.689.90
205.637.712.0836.9118.28
305.634.061.6729.7229.60
505.636.871.2422.0654.24
805.636.681.0518.6578.63
905.636.631.0017.8592.02
表 7  不同渗透率下基于贝叶斯定理的非高峰时段估计排队长度
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
1010.036.553.4834.6610.12
2010.037.112.9229.1121.36
3010.0312.452.4224.0828.64
5010.039.390.646.4250.95
8010.039.800.232.3379.59
9010.039.920.111.0590.51
表 8  不同渗透率下基于贝叶斯定理的高峰时段估计排队长度
图 9  不同变量下本研究模型和贝叶斯模型的MAPE
1 谈超鹏, 姚佳蓉, 曹喻旻, 等 基于网联车辆轨迹数据的周期排队长度估计[J]. 中国公路学报, 2021, 34 (7): 140- 151
TAN Chaopeng, YAO Jiarong, CAO Yumin, et al Cycle-based queue length estimation based on connected vehicle trajectory data[J]. China Journal of Highway and Transport, 2021, 34 (7): 140- 151
doi: 10.3969/j.issn.1001-7372.2021.07.012
2 TAN C , YAO J , TANG K , et al. Cycle-based queue length estimation for signalized intersections using sparse vehicle trajectory data [J]. IEEE Transactions on Intelligent Transportation Systems , 2021(1): 22.
3 王志建, 金晨辉, 龙顺忠, 等 基于轨迹数据的信号交叉口排队长度估计[J]. 科学技术与工程, 2022, 22 (21): 9407- 9413
WANG Zhijian, JIN Chenhui, LONG Shunzhong, et al Queue length of signal intersection based on trajectory data[J]. Science Technology and Engineering, 2022, 22 (21): 9407- 9413
doi: 10.3969/j.issn.1671-1815.2022.21.050
4 RAMEZANI M, GEROLIMINIS N Queue profile estimation in congested urban networks with probe data[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30 (6): 414- 432
doi: 10.1111/mice.12095
5 王钰, 徐建闽, 林培群 基于GPS数据的信号交叉口实时排队长度估算[J]. 交通运输系统工程与信息, 2016, 16 (6): 67- 73
WANG Yu, XU Jianmin, LIN Peiqun Real-time queue length estimation for signalized intersections using GPS data[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16 (6): 67- 73
doi: 10.3969/j.issn.1009-6744.2016.06.011
6 MOHAJERPOOR R, SABERI M, RAMEZANI M. Delay variability optimization using shockwave theory at an undersaturated intersection [C]// IFAC-PapersOnLine . Amsterdam: Elsevier Science Bv, 2017: 5289–5294.
7 李爱杰, 唐克双, 董可然 基于单截面低频检测数据的信号交叉口排队长度估计[J]. 交通信息与安全, 2018, 36 (1): 57- 64
LI Aijie, TANG Keshuang, DONG Keran Estimation of queuing length at signalized intersections using low-frequency point detector data[J]. Journal of Transport Information and Safety, 2018, 36 (1): 57- 64
doi: 10.3963/j.issn.1674-4861.2018.01.008
8 YAO J, LI F, TANG K, et al Sampled trajectory data-driven method of cycle-based volume estimation for signalized intersections by hybridizing shockwave theory and probability distribution[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (6): 2615- 2627
9 唐进, 于文雅 车辆轨迹数据驱动的道路交叉口排队长度探测[J]. 湖南交通科技, 2022, 48 (3): 208- 214
TANG Jin, YU Wenya Queue length detection of road intersection based on vehicle trajectory[J]. Hunan Communication Science and Technology, 2022, 48 (3): 208- 214
doi: 10.3969/j.issn.1008-844X.2022.03.042
10 刘旭星, 邓明君, 彭理群 基于轨迹数据的过饱和信号路口排队长度分析[J]. 华东交通大学学报, 2023, 40 (3): 66- 76
LIU Xuxing, DENG Mingjun, PENG Liqun Analysis of queue length at oversaturated signal intersections based on trajectory data[J]. Journal of East China Jiaotong University, 2023, 40 (3): 66- 76
11 LI J Q, ZHOU K, SHLADOVER S E, et al Estimating queue length under connected vehicle technology: using probe vehicle, loop detector, and fused data[J]. Transportation Research Record, 2013, 2356 (1): 17- 22
doi: 10.1177/0361198113235600103
12 COMERT G Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data[J]. European Journal of Operational Research, 2013, 226 (1): 67- 76
doi: 10.1016/j.ejor.2012.10.035
13 COMERT G Queue length estimation from probe vehicles at isolated intersections: estimators for primary parameters[J]. European Journal of Operational Research, 2016, 252 (2): 502- 521
doi: 10.1016/j.ejor.2016.01.040
14 ZHAO Y, ZHENG J, WONG W, et al Estimation of queue lengths, probe vehicle penetration rates, and traffic volumes at signalized intersections using probe vehicle trajectories[J]. Transportation Research Record, 2019, 2673 (11): 660- 670
doi: 10.1177/0361198119856340
15 MEI Y, GU W, CHUNG E, et al A Bayesian approach for estimating vehicle queue lengths at signalized intersections using probe vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 233- 249
doi: 10.1016/j.trc.2019.10.006
16 WONG W, SHEN S, ZHAO Y, et al On the estimation of connected vehicle penetration rate based on single-source connected vehicle data[J]. Transportation Research Part B: Methodological, 2019, 126: 169- 191
doi: 10.1016/j.trb.2019.06.003
17 TAN C, LIU L, WU H, et al Fuzing license plate recognition data and vehicle trajectory data for lane-based queue length estimation at signalized intersections[J]. Journal of Intelligent Transportation Systems, 2020, 24 (5): 449- 466
doi: 10.1080/15472450.2020.1732217
18 TALUKDER M A S, LIDBE A D, TEDLA E G, et al. Trajectory-based signal control in mixed connected vehicle environments [J]. Journal of Transportation Engineering Part A-Systems , 2021, 147(5): 04021016.
19 ZHAO Y, WONG W, ZHENG J, et al Maximum likelihood estimation of probe vehicle penetration rates and queue length distributions from probe vehicle data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 7628- 7636
20 ZHAO Y, ZHENG J, WONG W, et al Various methods for queue length and traffic volume estimation using probe vehicle trajectories[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 70- 91
doi: 10.1016/j.trc.2019.07.008
21 张伟斌, 叶竞宇, 白孜帅, 等 基于联网车辆轨迹数据的交叉口排队长度估计方法[J]. 中国公路学报, 2022, 35 (3): 216- 225
ZHANG Weibin, YE Jingyu, BAI Zishuai, et al Queue length estimation and accuracy assessment method for intersections based on trajectory data[J]. China Journal of Highway and Transport, 2022, 35 (3): 216- 225
doi: 10.3969/j.issn.1001-7372.2022.03.019
22 张斯钰. 基于网联车数据的城市网络排队估计和最大压强信号控制[D]. 杭州: 浙江大学.
ZHANG Siyu. Joint queue estimation and max pressure control for signalized urban networks with connected vehicles [D]. Hangzhou: Zhejiang University.
[1] 王琴,路庆昌,李建宇,王张鑫,张图. 考虑需求的出租车收益路线推荐[J]. 浙江大学学报(工学版), 2024, 58(6): 1233-1242.