计算机技术、控制工程、通信技术 |
|
|
|
|
动态窗口法引导的TD3无地图导航算法 |
柳佳乐1( ),薛雅丽1,*( ),崔闪2,洪君2 |
1. 南京航空航天大学 自动化学院,江苏 南京 211106 2. 上海机电工程研究所,上海 201109 |
|
TD3 mapless navigation algorithm guided by dynamic window approach |
Jiale LIU1( ),Yali XUE1,*( ),Shan CUI2,Jun HONG2 |
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China |
引用本文:
柳佳乐,薛雅丽,崔闪,洪君. 动态窗口法引导的TD3无地图导航算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1671-1679.
Jiale LIU,Yali XUE,Shan CUI,Jun HONG. TD3 mapless navigation algorithm guided by dynamic window approach. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1671-1679.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.014
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1671
|
1 |
ZHANG H, LIN W, CHEN A Path planning for the mobile robot: a review[J]. Symmetry, 2018, 10 (10): 450
doi: 10.3390/sym10100450
|
2 |
SINGH R, REN J, LIN X A Review of deep reinforcement learning algorithms for mobile robot path planning[J]. Vehicles, 2023, 5 (4): 1423- 1451
doi: 10.3390/vehicles5040078
|
3 |
ZHU K, ZHANG T Deep reinforcement learning based mobile robot navigation: a review[J]. Tsinghua Science and Technology, 2021, 26 (5): 674- 691
doi: 10.26599/TST.2021.9010012
|
4 |
刘宇庭, 郭世杰, 唐术锋, 等 改进A*与ROA-DWA融合的机器人路径规划[J]. 浙江大学学报: 工学版, 2024, 58 (2): 360- 369 LIU Yuting, GUO Shijie, TANG Shufeng, et al Improved A* and ROA-DWA fusion for robot path planning[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (2): 360- 369
|
5 |
YAN K, MA B Mapless navigation based on 2D LIDAR in complex unknown environments[J]. Sensors, 2020, 20 (20): 5802
doi: 10.3390/s20205802
|
6 |
ALI M, LIU L. GP-Frontier for local mapless navigation [C]//IEEE International Conference on Robotics and Automation. London: IEEE, 2023: 10047-10053.
|
7 |
康振兴 基于路径规划和深度强化学习的机器人避障导航研究[J]. 计算机应用与软件, 2024, 41 (1): 297- 303 KANG Zhenxing Research on robot obstacle avoidance navigation based on path planning and deep reinforcement learning[J]. Computer Applications and Software, 2024, 41 (1): 297- 303
doi: 10.3969/j.issn.1000-386x.2024.01.043
|
8 |
朱威, 洪力栋, 施海东, 等. 结合优势结构和最小目标Q值的深度强化学习导航算法[J/OL]. 控制理论与应用, 2024, 41(4): 716-728 [2024-05-10]. http://kns.cnki.net/kcms/detail/44.1240.TP.20230223.1323.020.html. ZHU Wei, HONG Lidong, SHI Haidong, et al. Deep reinforcement learning navigation algorithm combining advantage structure and minimum target Q value [J/OL]. Control Theory and Applications, 2024, 41(4): 716-728 [2024-05-10]. http://kns.cnki.net/kcms/detail/44.1240.TP.20230223.1323.020.html.
|
9 |
李昭莹, 欧一鸣, 石若凌 基于深度Q网络的改进RRT路径规划算法[J]. 空天防御, 2021, 4 (3): 17- 23 LI Zhaoying, OU Yiming, SHI Ruoling Improved RRT path planning algorithm based on deep Q-network[J]. Air and Space Defense, 2021, 4 (3): 17- 23
doi: 10.3969/j.issn.2096-4641.2021.03.003
|
10 |
WANG C, WANG J, SHEN Y, et al Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (3): 2124- 2136
doi: 10.1109/TVT.2018.2890773
|
11 |
CIMURS R, SUH I H, LEE J H Goal-driven autonomous exploration through deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2021, 7 (2): 730- 737
|
12 |
KONG F, WANG Q, GAO S, et al B-APFDQN: a UAV path planning algorithm based on deep Q-network and artificial potential field[J]. IEEE Access, 2023, 11: 44051- 44064
doi: 10.1109/ACCESS.2023.3273164
|
13 |
李永迪, 李彩虹, 张耀玉, 等 基于APF-LSTM-DDPG算法的移动机器人局部路径规划[J]. 山东理工大学学报: 自然科学版, 2024, 38 (1): 33- 41 LI Yongdi, LI Caihong, ZHANG Yaoyu, et al Local path planning for mobile robots based on APF-LSTM-DDPG algorithm[J]. Journal of Shandong University of Technology: Natural Science Edition, 2024, 38 (1): 33- 41
|
14 |
张凤, 顾琦然, 袁帅 好奇心蒸馏双Q网络移动机器人路径规划方法[J]. 计算机工程与应用, 2023, 59 (19): 316- 322 ZHANG Feng, GU Qiran, YUAN Shuai Path planning method for mobile robots using curiosity distilled double Q-network[J]. Computer Engineering and Applications, 2023, 59 (19): 316- 322
doi: 10.3778/j.issn.1002-8331.2208-0422
|
15 |
ZHANG Q, ZHANG L, MA Q, et al. The LSTM-PER-TD3 algorithm for deep reinforcement learning in continuous control tasks [C]//China Automation Congress. Chongqing: IEEE, 2023: 671-676.
|
16 |
TAN Y, LIN Y, LIU T, et al. PL-TD3: a dynamic path planning algorithm of mobile robot [C]//IEEE International Conference on Systems, Man, and Cybernetics. Prague: IEEE, 2022: 3040-3045.
|
17 |
HUANG B, XIE J, YAN J Inspection robot navigation based on improved TD3 algorithm[J]. Sensors, 2024, 24 (8): 2525
doi: 10.3390/s24082525
|
18 |
XIE L, WANG S, ROSA S, et al. Learning with training wheels: speeding up training with a simple controller for deep reinforcement learning [C]//IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 6276-6283.
|
19 |
YU W, PENG J, QIU Q, et al. PathRL: an end-to-end path generation method for collision avoidance via deep reinforcement learning [C]// IEEE International Conference on Robotics and Automation. Yokohama: IEEE, 2024: 9278-9284.
|
20 |
户高铭, 蔡克卫, 王芳, 等 基于深度强化学习的无地图移动机器人导航[J]. 控制与决策, 2024, 39 (3): 985- 993 HU Gaoming, CAI Kewei, WANG Fang, et al Mapless navigation for mobile robots based on deep reinforcement learning[J]. Control and Decision, 2024, 39 (3): 985- 993
|
21 |
金毅康. 移动机器人多机探索与路径规划算法研究[D]. 西安: 西安电子科技大学, 2020. JIN Yikang. Research on multi-robot exploration and path planning algorithms for mobile robots [D]. Xi’an: Xidian University, 2020.
|
22 |
罗洁, 王中训, 潘康路, 等 基于改进人工势场法的无人车路径规划算法[J]. 电子设计工程, 2022, 30 (17): 90- 94 LUO Jie, WANG Zhongxun, PAN Kanglu, et al Path planning algorithm for unmanned vehicles based on improved artificial potential field method[J]. Electronic Design Engineering, 2022, 30 (17): 90- 94
|
23 |
DOBREVSKI M, SKOČAJ D. Adaptive dynamic window approach for local navigation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 6930-6936.
|
24 |
DOBREVSKI M, SKOČAJ D. Dynamic adaptive dynamic window approach [J]. IEEE Transactions on Robotics, 2024, 40: 3068-3081.
|
25 |
ZHANG S, LI Y, DONG Q Autonomous navigation of UAV in multi-obstacle environments based on a deep reinforcement learning approach[J]. Applied Soft Computing, 2022, 115
|
26 |
张仪, 冯伟, 王卫军, 等 融合LSTM和PPO算法的移动机器人视觉导航[J]. 电子测量与仪器学报, 2022, 36 (8): 132- 140 ZHANG Yi, FENG Wei, WANG Weijun, et al Vision-based navigation of mobile robots integrating LSTM and PPO algorithms[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (8): 132- 140
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|