Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 14-22    DOI: 10.3785/j.issn.1008-9209.2022.02.141
综述     
乙烯调控植物营养缺乏胁迫响应的分子机制
李艾凝1(),姜百惠1,李桂新2,丁忠杰1,郑绍建1()
1.浙江大学生命科学学院,植物生理学与生物化学国家重点实验室,浙江 杭州 310058
2.浙江大学农业与生物技术学院,浙江 杭州 310058
Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants
Aining LI1(),Baihui JIANG1,Guixin LI2,Zhongjie DING1,Shaojian ZHENG1()
1.State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(1308 KB)   HTML
摘要:

植物的生长发育需要氮、磷、钾、硫、铁等14种矿质营养元素,而这些元素在不同类型土壤中的生物有效性存在极大差异。为了适应养分缺乏的环境,植物必须感知外部和内部矿质养分浓度的变化,并通过一系列信号转导产生形态和生理反应来促进对矿质营养元素的吸收和利用。乙烯是一种重要的植物气体激素,在植物生命周期的许多方面发挥着关键作用。近年来的大量研究表明,乙烯在调节植物响应不同营养缺乏胁迫中也发挥着重要的调控作用。本文全面总结了乙烯直接或与其他激素/化学信号分子协同调控不同营养胁迫响应的分子机制,并对今后的研究方向进行了展望。

关键词: 乙烯植物激素营养胁迫一氧化氮    
Abstract:

The growth and development of plants require 14 essential mineral nutrient elements, such as nitrogen, phosphorus, potassium, sulfur, iron, etc. Nevertheless, the bioavailability of these elements varies greatly in the different types of soils. In order to adapt to nutrient-deficient environment, plants must sense the changes of external and internal mineral nutrient concentrations, and generate physiological and morphological responses via a series of signal transduction events, to facilitate the nutrient uptake and utilization. Ethylene is an essential gaseous plant hormone, and plays pivotal roles in many aspects of the plant life cycle. In recent years, accumulating studies have shown that ethylene also plays an important part in regulating plant responses to various nutrient deficiency stresses. Here, we comprehensively summarized the molecular mechanisms of ethylene regulating different nutritional stress responses directly or synergistically with other plant hormones/chemical signaling molecules, and gave an outlook for the future research.

Key words: ethylene    plant hormone    nutritional stress    iron    phosphorus    potassium    nitrogen    nitric oxide
收稿日期: 2022-02-14 出版日期: 2023-03-07
CLC:  Q945.1  
基金资助: 浙江省自然科学基金项目(LY21C020001);高等学校学科创新引智计划“111计划”项目(B-14027);中央高校基本科研业务费专项资金
通讯作者: 郑绍建     E-mail: 961856314@qq.com;sjzheng@zju.edu.cn
作者简介: 李艾凝(https://orcid.org/0000-0003-2748-4394),E-mail:961856314@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李艾凝
姜百惠
李桂新
丁忠杰
郑绍建

引用本文:

李艾凝,姜百惠,李桂新,丁忠杰,郑绍建. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14-22.

Aining LI,Baihui JIANG,Guixin LI,Zhongjie DING,Shaojian ZHENG. Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 14-22.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.02.141        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/14

图1  乙烯调控不同营养缺乏胁迫响应的分子模式图实线箭头代表正调控,T形箭头代表负调控,不同颜色箭头分别代表参与对应颜色的营养缺乏胁迫调控路径。
图2  乙烯与不同激素/NO信号互作调控营养缺乏胁迫响应的分子模式图实线箭头代表正调控,T形箭头代表负调控,虚线箭头代表未显示的步骤或未知的元件。不同颜色箭头分别代表参与对应颜色的营养缺乏胁迫调控路径。
64 YOON G M, KIEBER J J. 14-3-3 regulates 1-aminocyclopro-pane-1-carboxylate synthase protein turnover in Arabidopsis [J]. The Plant Cell, 2013, 25(3): 1016-1028. DOI: 10.1105/tpc.113.110106
doi: 10.1105/tpc.113.110106
65 LEE H Y, PARK H L, PARK C, et al. Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress[J]. PNAS, 2021, 118(34): e2011900118. DOI: 10.1073/pnas.2011900118
doi: 10.1073/pnas.2011900118
66 WANG B, LI Y, ZHANG W H. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency[J]. Annals of Botany, 2012, 110(3): 681-688. DOI: 10.1093/aob/mcs126
doi: 10.1093/aob/mcs126
67 GARCIA M J, SUAREZ V, ROMERA F J, et al. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants[J]. Plant Physiology and Biochemistry, 2011, 49(5): 537-544. DOI: 10.1016/j.plaphy.2011.01.019
doi: 10.1016/j.plaphy.2011.01.019
68 LIU M, ZHANG H H, FANG X Z, et al. Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2018, 59(7): 1452-1465. DOI: 10.1093/pcp/pcy078
doi: 10.1093/pcp/pcy078
69 FU L W, LIU Y L, QIN G C, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth[J]. Nature, 2021, 591(7849): 288-292. DOI: 10.1038/s41586-021-03310-y
doi: 10.1038/s41586-021-03310-y
1 CHANG C. Q & A: How do plants respond to ethylene and what is its importance?[J]. BMC Biology, 2016, 14(1): 1-7. DOI: 10.1186/s12915-016-0230-0
doi: 10.1186/s12915-016-0230-0
2 VANDERSTRAETEN L, VAN DER STRAETEN D. Accu-mulation and transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: current status, considerations for future research and agronomic applications[J]. Frontiers in Plant Science, 2017, 8: 38. DOI: 10.3389/fpls.2017.00038
doi: 10.3389/fpls.2017.00038
3 WEN X, ZHANG C, JI Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012, 22(11): 1613-1616. DOI: 10.1038/cr.2012.145
doi: 10.1038/cr.2012.145
4 ZHANG F, WANG L K, QI B, et al. EIN2 mediates direct regulation of histone acetylation in the ethylene response[J]. PNAS, 2017, 114(38): 10274-10279. DOI: 10.1073/pnas.1707937114
doi: 10.1073/pnas.1707937114
5 LI W Y, MA M D, FENG Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis [J]. Cell, 2015, 163(3): 670-683. DOI: 10.1016/j.cell.2015.09.037
doi: 10.1016/j.cell.2015.09.037
6 GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3): 815-820.
7 GARCÍA M J, LUCENA C, ROMERA F J. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants[J]. International Journal of Molecular Sciences, 2021, 22(9): 4904. DOI: 10.3390/ijms22094904
doi: 10.3390/ijms22094904
8 GARCÍA M J, LUCENA C, ROMERA F J, et al. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis [J]. Journal of Experimental Botany, 2010, 61(14): 3885-3899. DOI: 10.1093/jxb/erq203
doi: 10.1093/jxb/erq203
9 BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends in Plant Science, 2015, 20(2): 124-133. DOI: 10.1016/j.tplants.2014.11.004
doi: 10.1016/j.tplants.2014.11.004
10 GAO F, ROBE K, GAYMARD F, et al. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors?[J]. Frontiers in Plant Science, 2019, 10: 6. DOI: 10.3389/fpls.2019.00006
doi: 10.3389/fpls.2019.00006
11 SCHWARZ B, BAUER P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures[J]. Journal of Experimental Botany, 2020, 71(5): 1694-1705. DOI: 10.1093/jxb/eraa012
doi: 10.1093/jxb/eraa012
12 GARCÍA M J, GARCÍA-MATEO M J, LUCENA C, et al. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum, 2014, 150(1): 95-106. DOI: 10.1111/ppl.12076
doi: 10.1111/ppl.12076
13 LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE 3-LIKE 1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis [J]. The Plant Cell, 2011, 23(5): 1815-1829. DOI: 10.1105/tpc.111.084715
doi: 10.1105/tpc.111.084715
14 YANG Y, OU B, ZHANG J Z, et al. The Arabidopsis mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25[J]. The Plant Journal, 2014, 77(6): 838-851. DOI: 10.1111/tpj.12440
doi: 10.1111/tpj.12440
15 CURIE C, MARI S. New routes for plant iron mining[J]. New Phytologist, 2017, 214(2): 521-525. DOI: 10.1111/nph.14364
doi: 10.1111/nph.14364
16 ZAMIOUDIS C, HANSON J, PIETERSE C M J. Beta-glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots[J]. New Phytologist, 2014, 204(2): 368-379. DOI: 10.1111/nph.12980
doi: 10.1111/nph.12980
17 LUCENA C, ROMERA F J, GARCÍA M J, et al. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Frontiers in Plant Science, 2015, 6: 1056. DOI: 10.3389/fpls.2015.01056
doi: 10.3389/fpls.2015.01056
18 GARCÍA M J, ROMERA F J, LUCENA C, et al. Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies[J]. Plant Physiology, 2015, 169(1): 51-60. DOI: 10.1104/pp.15.00708
doi: 10.1104/pp.15.00708
19 FENG Y, XU P, LI B S, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis [J]. PNAS, 2017, 114(52): 13834-13839. DOI: 10.1073/pnas.1711723115
doi: 10.1073/pnas.1711723115
20 SCHMIDT W. From faith to fate: ethylene signaling in morphogenic responses to P and Fe deficiency[J]. Journal of Plant Nutrition and Soil Science, 2001, 164(2): 147-154.
21 SUN Y, LI J Q, YAN J Y, et al. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1193-1212. DOI: 10.1111/jipb.12986
doi: 10.1111/jipb.12986
22 DREW M C, HE C J, MORGAN P W. Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of Zea mays L.[J]. Plant Physiology, 1989, 91(1): 266-271.
23 KIM H, LYNCH J P, BROWN K M. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia[J]. Plant, Cell & Environment, 2008, 31(12): 1744-1755. DOI: 10.1111/j.1365-3040.2008.01886.x
doi: 10.1111/j.1365-3040.2008.01886.x
24 LI Y S, MAO X T, TIAN Q Y, et al. Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production[J]. Environmental and Experimental Botany, 2009, 67(1): 172-177. DOI: 10.1016/j.envexpbot.2009.05.013
doi: 10.1016/j.envexpbot.2009.05.013
25 LEI M G, ZHU C M, LIU Y D, et al. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis [J]. New Phytologist, 2011, 189(4): 1084-1095. DOI: 10.1111/j.1469-8137.2010.03555.x
doi: 10.1111/j.1469-8137.2010.03555.x
26 THIBAUD M, ARRIGHI J, BAYLE V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis [J]. The Plant Journal, 2010, 64(5): 775-789. DOI: 10.1111/j.1365-313X.2010.04375.x
doi: 10.1111/j.1365-313X.2010.04375.x
27 SONG L, LIU D. Ethylene and plant responses to phosphate deficiency[J]. Frontiers in Plant Science, 2015, 6: 796. DOI: 10.3389/fpls.2015.00796
doi: 10.3389/fpls.2015.00796
28 BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis [J]. PLoS Genetics, 2010, 6(9): e1001102. DOI: 10.1371/journal.pgen.1001102
doi: 10.1371/journal.pgen.1001102
29 HE C J, MORGAN P W, DREW M C. Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during aerenchyma formation[J].Plant Physiology, 1992, 98(1): 137-142.
30 BASU P, ZHANG Y J, LYNCH J P, et al. Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism[J]. Functional Plant Biology, 2007, 34(1): 41-51. DOI: 10.1071/FP06209
doi: 10.1071/FP06209
31 DINH P T Y, ROLDAN M, LEUNG S, et al. Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.)[J]. Plant Growth Regulation, 2012, 66(2): 179-190. DOI: 10.1007/s10725-011-9642-6
doi: 10.1007/s10725-011-9642-6
32 LIU Y, XIE Y R, WANG H, et al. Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of PHOSPHATE STARVATION RESPONSE1 [J]. The Plant Cell, 2017, 29(9): 2269-2284. DOI: 10.1105/tpc.17.00268
doi: 10.1105/tpc.17.00268
33 GUO P R, LI Z H, HUANG P X, et al. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence[J]. The Plant Cell, 2017, 29(11): 2854-2870. DOI: 10.1105/tpc.17.00438
doi: 10.1105/tpc.17.00438
34 LI Y S, GAO Y, TIAN Q Y, et al. Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcata [J]. Environmental and Experimental Botany, 2011, 71(1): 114-120. DOI: 10.1016/j.envexpbot.2010.11.007
doi: 10.1016/j.envexpbot.2010.11.007
35 WANG L S, DONG J S, GAO Z Y, et al. The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes ETHYLENE OVER PRODUCTION 1[J]. Plant and Cell Physiology, 2012, 53(6): 1093-1105. DOI: 10.1093/pcp/pcs072
doi: 10.1093/pcp/pcs072
36 ZHANG X L, WU Q, TAO Y, et al. ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner[J]. Environmental and Experimental Botany, 2021, 185: 104386. DOI: 10.1016/j.envexpbot.2021.104386
doi: 10.1016/j.envexpbot.2021.104386
37 ZHU X F, ZHU C Q, WANG C, et al. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice[J]. Journal of Experimental Botany, 2017, 68(3): 753-760. DOI: 10.1093/jxb/erw480
doi: 10.1093/jxb/erw480
38 CHACÓN-LÓPEZ A, IBARRA-LACLETTE E, SÁNCHEZ-CALDERÓN L, et al. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation[J]. Plant Signaling & Behavior, 2011, 6(3): 382-392. DOI: 10.4161/psb.6.3.14160
doi: 10.4161/psb.6.3.14160
39 ZHANG H Y, YANG Y M, SUN C Y, et al. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean[J]. Plant, Cell & Environment, 2020, 43(9): 2080-2094. DOI: 10.1111/pce.13816
doi: 10.1111/pce.13816
40 SONG L, YU H P, DONG J S, et al. The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation[J]. PLoS Genetics, 2016, 12(7): e1006194. DOI: 10.1371/journal.pgen.1006194
doi: 10.1371/journal.pgen.1006194
41 KUMAR P, KUMAR T, SINGH S, et al. Potassium: a key modulator for cell homeostasis[J]. Journal of Biotechnology, 2020, 324: 198-210. DOI: 10.1016/j.jbiotec.2020.10.018
doi: 10.1016/j.jbiotec.2020.10.018
42 JUNG J Y, SHIN R, SCHACHTMAN D P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis [J]. The Plant Cell, 2009, 21(2): 607-621. DOI: 10.1105/tpc.108.063099
doi: 10.1105/tpc.108.063099
43 FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: initial assessment[J]. Applied Clay Science, 2014, 101: 119-127. DOI: 10.1016/j.clay.2014.07.026
doi: 10.1016/j.clay.2014.07.026
44 CHÉREL I, LEFOULON C, BOEGLIN M, et al. Molecular mechanisms involved in plant adaptation to low K+ availability[J]. Journal of Experimental Botany, 2014, 65(3): 833-848. DOI: 10.1093/jxb/ert402
doi: 10.1093/jxb/ert402
45 HUANG L L, JIANG Q N, WU J Y, et al. Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis [J]. Plant Molecular Biology, 2020, 102(1/2): 143-158. DOI: 10.1007/s11103-019-00937-4
doi: 10.1007/s11103-019-00937-4
46 WAWRZYŃSKA A, MONIUSZKO G, SIRKO A. Links between ethylene and sulfur nutrition: a regulatory interplay or just metabolite association?[J]. Frontiers in Plant Science, 2015, 6: 1053. DOI: 10.3389/fpls.2015.01053
doi: 10.3389/fpls.2015.01053
47 MURAD M AL, RAZI K, BENJAMIN L K, et al. Ethylene regulates sulfur acquisition by regulating the expression of sulfate transporter genes in oilseed rape[J]. Physiologia Plantarum, 2021, 171(4): 533-545. DOI: 10.1111/ppl.13157
doi: 10.1111/ppl.13157
48 MARUYAMA-NAKASHITA A, NAKAMURA Y, TOHGE T, et al. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism[J]. The Plant Cell, 2006, 18(11): 3235-3251. DOI: 10.1105/tpc.106.046458
doi: 10.1105/tpc.106.046458
49 WAWRZYŃSKA A, SIRKO A.EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor[J]. Plant Science, 2016, 253: 50-57. DOI: 10.1016/j.plantsci.2016.09.002
doi: 10.1016/j.plantsci.2016.09.002
50 DIETZEN C, KOPRIVOVA A, WHITCOMB S J, et al. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response[J]. Plant Physiology, 2020, 184(4): 2120-2136. DOI: 10.1104/pp.20.01192
doi: 10.1104/pp.20.01192
51 CHEN H F, ZHANG Q, WANG X R, et al. Nitrogen form-mediated ethylene signal regulates root-to-shoot K+ translocation via NRT1.5 [J]. Plant, Cell & Environment, 2021, 44(12): 3806-3818. DOI: 10.1111/pce.14182
doi: 10.1111/pce.14182
52 IQBAL N, TRIVELLINI A, MASOOD A, et al. Current understanding on ethylene signaling in plants: the influence of nutrient availability[J]. Plant Physiology and Biochemistry, 2013, 73: 128-138. DOI: 10.1016/j.plaphy.2013.09.011
doi: 10.1016/j.plaphy.2013.09.011
53 KHAN M I R, TRIVELLINI A, FATMA M, et al. Role of ethylene in responses of plants to nitrogen availability[J]. Frontiers in Plant Science, 2015, 6: 927. DOI: 10.3389/fpls.2015.00927
doi: 10.3389/fpls.2015.00927
54 VIDAL E A, ALVAREZ J M, ARAUS V, et al. Nitrate in 2020: thirty years from transport to signaling networks[J]. The Plant Cell, 2020, 32(7): 2094-2119. DOI: 10.1105/tpc.19.00748
doi: 10.1105/tpc.19.00748
55 ZHENG D C, HAN X, AN Y, et al. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis [J]. Plant, Cell & Environment, 2013, 36(7): 1328-1337. DOI: 10.1111/pce.12062
doi: 10.1111/pce.12062
56 YU H L, LUO N, SUN L C, et al. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling[J]. Journal of Experimental Botany, 2012, 63(12): 4527-4538. DOI: 10.1093/jxb/ers131
doi: 10.1093/jxb/ers131
57 LEWIS D R, NEGI S, SUKUMAR P, et al. Ethylene inhibits lateral root development, increases IAA transport and expres-sion of PIN3 and PIN7 auxin efflux carriers[J]. Development, 2011, 138(16): 3485-3495. DOI: 10.1242/dev.065102
doi: 10.1242/dev.065102
58 LOPEZ-BUCIO J, CRUZ-RAMIREZ A, HERRERA-ESTRELLA L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6(3): 280-287. DOI: 10.1016/s1369-5266(03)00035-9
doi: 10.1016/s1369-5266(03)00035-9
59 MUDAY G K, RAHMAN A, BINDER B M. Auxin and ethylene: collaborators or competitors?[J]. Trends in Plant Science, 2012, 17(4): 181-195. DOI: 10.1016/j.tplants.2012.02.001
doi: 10.1016/j.tplants.2012.02.001
60 SWARUP R, PERRY P, HAGENBEEK D, et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation[J]. The Plant Cell, 2007, 19(7): 2186-2196. DOI: 10.1105/tpc.107.052100
doi: 10.1105/tpc.107.052100
61 ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998. DOI: 10.1105/tpc.114.129296
doi: 10.1105/tpc.114.129296
62 MCCLELLAN C A, CHANG C. The role of protein turnover in ethylene biosynthesis and response[J]. Plant Science, 2008, 175(1/2): 24-31. DOI: 10.1016/j.plantsci.2008.01.004
doi: 10.1016/j.plantsci.2008.01.004
[1] 郝韵,吕军. 我国东部典型农业流域河流氮输出对人类活动和气象因子的响应[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 605-613.
[2] 俞巧钢,黄郑宸,叶静,孙万春,林辉,王强,王峰,马军伟. 复合生化抑制剂对稻田氮素转化和水稻生长的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 635-643.
[3] 巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.
[4] 丁嘉,李钰,官宝红. 聚四氟乙烯改性掺硼金刚石电极强化降解阿特拉津[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 369-376.
[5] 王振杰,张康,梁莉,熊晴晴,杜华华. 铁饱和度对乳铁蛋白抑菌活性的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 377-382.
[6] 顾思婷,陈謇,李志洋,施加春. 有机肥部分替代化学氮肥的安全施用比例及环境容量研究——以典型土壤生菜种植为例[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 191-206.
[7] 彭志芸,吕旭,伍杂日曲,舒川海,谌洁,向开宏,杨志远,马均. 麦(油)-稻轮作下秸秆还田与氮肥运筹对土壤氮素供应及直播稻产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 45-56.
[8] 姜炫旭,周辉,叶钰珊,刘仲华,魏月德,杨江帆,金恩惠,何普明,李博,吴媛媛,屠幼英. 铁观音对阿尔茨海默病小鼠行为的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 68-77.
[9] 常竣泊,马哲宇,丁忠杰,郑绍建. 植物种子铁储存、运输和再利用分子机制的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 473-480.
[10] 陈謇,丁安娜,施加春. 浙江省温岭市土壤pH及氮磷钾养分时空动态变化特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 517-526.
[11] 朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[12] 刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.
[13] 陈耘蕊,毛志君,李兆伟,范凯. 植物蛋白磷酸酶2C结构和功能的研究现状与进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 11-20.
[14] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[15] 尤式备,徐佳慧,郭怡文,廖芳蕾,杨莉,陈文荣,郭卫东. 蓝莓根毛缺失的机制及内生菌根真菌的促生作用[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 417-427.