综述 |
|
|
|
|
乙烯调控植物营养缺乏胁迫响应的分子机制 |
李艾凝1(),姜百惠1,李桂新2,丁忠杰1,郑绍建1() |
1.浙江大学生命科学学院,植物生理学与生物化学国家重点实验室,浙江 杭州 310058 2.浙江大学农业与生物技术学院,浙江 杭州 310058 |
|
Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants |
Aining LI1(),Baihui JIANG1,Guixin LI2,Zhongjie DING1,Shaojian ZHENG1() |
1.State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China 2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China |
引用本文:
李艾凝,姜百惠,李桂新,丁忠杰,郑绍建. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14-22.
Aining LI,Baihui JIANG,Guixin LI,Zhongjie DING,Shaojian ZHENG. Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 14-22.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.02.141
或
https://www.zjujournals.com/agr/CN/Y2023/V49/I1/14
|
64 |
YOON G M, KIEBER J J. 14-3-3 regulates 1-aminocyclopro-pane-1-carboxylate synthase protein turnover in Arabidopsis [J]. The Plant Cell, 2013, 25(3): 1016-1028. DOI: 10.1105/tpc.113.110106
doi: 10.1105/tpc.113.110106
|
65 |
LEE H Y, PARK H L, PARK C, et al. Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress[J]. PNAS, 2021, 118(34): e2011900118. DOI: 10.1073/pnas.2011900118
doi: 10.1073/pnas.2011900118
|
66 |
WANG B, LI Y, ZHANG W H. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency[J]. Annals of Botany, 2012, 110(3): 681-688. DOI: 10.1093/aob/mcs126
doi: 10.1093/aob/mcs126
|
67 |
GARCIA M J, SUAREZ V, ROMERA F J, et al. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants[J]. Plant Physiology and Biochemistry, 2011, 49(5): 537-544. DOI: 10.1016/j.plaphy.2011.01.019
doi: 10.1016/j.plaphy.2011.01.019
|
68 |
LIU M, ZHANG H H, FANG X Z, et al. Auxin acts downstream of ethylene and nitric oxide to regulate magnesium deficiency-induced root hair development in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2018, 59(7): 1452-1465. DOI: 10.1093/pcp/pcy078
doi: 10.1093/pcp/pcy078
|
69 |
FU L W, LIU Y L, QIN G C, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth[J]. Nature, 2021, 591(7849): 288-292. DOI: 10.1038/s41586-021-03310-y
doi: 10.1038/s41586-021-03310-y
|
1 |
CHANG C. Q & A: How do plants respond to ethylene and what is its importance?[J]. BMC Biology, 2016, 14(1): 1-7. DOI: 10.1186/s12915-016-0230-0
doi: 10.1186/s12915-016-0230-0
|
2 |
VANDERSTRAETEN L, VAN DER STRAETEN D. Accu-mulation and transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: current status, considerations for future research and agronomic applications[J]. Frontiers in Plant Science, 2017, 8: 38. DOI: 10.3389/fpls.2017.00038
doi: 10.3389/fpls.2017.00038
|
3 |
WEN X, ZHANG C, JI Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012, 22(11): 1613-1616. DOI: 10.1038/cr.2012.145
doi: 10.1038/cr.2012.145
|
4 |
ZHANG F, WANG L K, QI B, et al. EIN2 mediates direct regulation of histone acetylation in the ethylene response[J]. PNAS, 2017, 114(38): 10274-10279. DOI: 10.1073/pnas.1707937114
doi: 10.1073/pnas.1707937114
|
5 |
LI W Y, MA M D, FENG Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis [J]. Cell, 2015, 163(3): 670-683. DOI: 10.1016/j.cell.2015.09.037
doi: 10.1016/j.cell.2015.09.037
|
6 |
GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3): 815-820.
|
7 |
GARCÍA M J, LUCENA C, ROMERA F J. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants[J]. International Journal of Molecular Sciences, 2021, 22(9): 4904. DOI: 10.3390/ijms22094904
doi: 10.3390/ijms22094904
|
8 |
GARCÍA M J, LUCENA C, ROMERA F J, et al. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis [J]. Journal of Experimental Botany, 2010, 61(14): 3885-3899. DOI: 10.1093/jxb/erq203
doi: 10.1093/jxb/erq203
|
9 |
BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends in Plant Science, 2015, 20(2): 124-133. DOI: 10.1016/j.tplants.2014.11.004
doi: 10.1016/j.tplants.2014.11.004
|
10 |
GAO F, ROBE K, GAYMARD F, et al. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors?[J]. Frontiers in Plant Science, 2019, 10: 6. DOI: 10.3389/fpls.2019.00006
doi: 10.3389/fpls.2019.00006
|
11 |
SCHWARZ B, BAUER P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures[J]. Journal of Experimental Botany, 2020, 71(5): 1694-1705. DOI: 10.1093/jxb/eraa012
doi: 10.1093/jxb/eraa012
|
12 |
GARCÍA M J, GARCÍA-MATEO M J, LUCENA C, et al. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum, 2014, 150(1): 95-106. DOI: 10.1111/ppl.12076
doi: 10.1111/ppl.12076
|
13 |
LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE 3-LIKE 1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis [J]. The Plant Cell, 2011, 23(5): 1815-1829. DOI: 10.1105/tpc.111.084715
doi: 10.1105/tpc.111.084715
|
14 |
YANG Y, OU B, ZHANG J Z, et al. The Arabidopsis mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25[J]. The Plant Journal, 2014, 77(6): 838-851. DOI: 10.1111/tpj.12440
doi: 10.1111/tpj.12440
|
15 |
CURIE C, MARI S. New routes for plant iron mining[J]. New Phytologist, 2017, 214(2): 521-525. DOI: 10.1111/nph.14364
doi: 10.1111/nph.14364
|
16 |
ZAMIOUDIS C, HANSON J, PIETERSE C M J. Beta-glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots[J]. New Phytologist, 2014, 204(2): 368-379. DOI: 10.1111/nph.12980
doi: 10.1111/nph.12980
|
17 |
LUCENA C, ROMERA F J, GARCÍA M J, et al. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Frontiers in Plant Science, 2015, 6: 1056. DOI: 10.3389/fpls.2015.01056
doi: 10.3389/fpls.2015.01056
|
18 |
GARCÍA M J, ROMERA F J, LUCENA C, et al. Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies[J]. Plant Physiology, 2015, 169(1): 51-60. DOI: 10.1104/pp.15.00708
doi: 10.1104/pp.15.00708
|
19 |
FENG Y, XU P, LI B S, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis [J]. PNAS, 2017, 114(52): 13834-13839. DOI: 10.1073/pnas.1711723115
doi: 10.1073/pnas.1711723115
|
20 |
SCHMIDT W. From faith to fate: ethylene signaling in morphogenic responses to P and Fe deficiency[J]. Journal of Plant Nutrition and Soil Science, 2001, 164(2): 147-154.
|
21 |
SUN Y, LI J Q, YAN J Y, et al. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1193-1212. DOI: 10.1111/jipb.12986
doi: 10.1111/jipb.12986
|
22 |
DREW M C, HE C J, MORGAN P W. Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of Zea mays L.[J]. Plant Physiology, 1989, 91(1): 266-271.
|
23 |
KIM H, LYNCH J P, BROWN K M. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia[J]. Plant, Cell & Environment, 2008, 31(12): 1744-1755. DOI: 10.1111/j.1365-3040.2008.01886.x
doi: 10.1111/j.1365-3040.2008.01886.x
|
24 |
LI Y S, MAO X T, TIAN Q Y, et al. Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production[J]. Environmental and Experimental Botany, 2009, 67(1): 172-177. DOI: 10.1016/j.envexpbot.2009.05.013
doi: 10.1016/j.envexpbot.2009.05.013
|
25 |
LEI M G, ZHU C M, LIU Y D, et al. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis [J]. New Phytologist, 2011, 189(4): 1084-1095. DOI: 10.1111/j.1469-8137.2010.03555.x
doi: 10.1111/j.1469-8137.2010.03555.x
|
26 |
THIBAUD M, ARRIGHI J, BAYLE V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis [J]. The Plant Journal, 2010, 64(5): 775-789. DOI: 10.1111/j.1365-313X.2010.04375.x
doi: 10.1111/j.1365-313X.2010.04375.x
|
27 |
SONG L, LIU D. Ethylene and plant responses to phosphate deficiency[J]. Frontiers in Plant Science, 2015, 6: 796. DOI: 10.3389/fpls.2015.00796
doi: 10.3389/fpls.2015.00796
|
28 |
BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis [J]. PLoS Genetics, 2010, 6(9): e1001102. DOI: 10.1371/journal.pgen.1001102
doi: 10.1371/journal.pgen.1001102
|
29 |
HE C J, MORGAN P W, DREW M C. Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during aerenchyma formation[J].Plant Physiology, 1992, 98(1): 137-142.
|
30 |
BASU P, ZHANG Y J, LYNCH J P, et al. Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism[J]. Functional Plant Biology, 2007, 34(1): 41-51. DOI: 10.1071/FP06209
doi: 10.1071/FP06209
|
31 |
DINH P T Y, ROLDAN M, LEUNG S, et al. Regulation of root growth by auxin and ethylene is influenced by phosphate supply in white clover (Trifolium repens L.)[J]. Plant Growth Regulation, 2012, 66(2): 179-190. DOI: 10.1007/s10725-011-9642-6
doi: 10.1007/s10725-011-9642-6
|
32 |
LIU Y, XIE Y R, WANG H, et al. Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of PHOSPHATE STARVATION RESPONSE1 [J]. The Plant Cell, 2017, 29(9): 2269-2284. DOI: 10.1105/tpc.17.00268
doi: 10.1105/tpc.17.00268
|
33 |
GUO P R, LI Z H, HUANG P X, et al. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence[J]. The Plant Cell, 2017, 29(11): 2854-2870. DOI: 10.1105/tpc.17.00438
doi: 10.1105/tpc.17.00438
|
34 |
LI Y S, GAO Y, TIAN Q Y, et al. Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcata [J]. Environmental and Experimental Botany, 2011, 71(1): 114-120. DOI: 10.1016/j.envexpbot.2010.11.007
doi: 10.1016/j.envexpbot.2010.11.007
|
35 |
WANG L S, DONG J S, GAO Z Y, et al. The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes ETHYLENE OVER PRODUCTION 1[J]. Plant and Cell Physiology, 2012, 53(6): 1093-1105. DOI: 10.1093/pcp/pcs072
doi: 10.1093/pcp/pcs072
|
36 |
ZHANG X L, WU Q, TAO Y, et al. ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner[J]. Environmental and Experimental Botany, 2021, 185: 104386. DOI: 10.1016/j.envexpbot.2021.104386
doi: 10.1016/j.envexpbot.2021.104386
|
37 |
ZHU X F, ZHU C Q, WANG C, et al. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice[J]. Journal of Experimental Botany, 2017, 68(3): 753-760. DOI: 10.1093/jxb/erw480
doi: 10.1093/jxb/erw480
|
38 |
CHACÓN-LÓPEZ A, IBARRA-LACLETTE E, SÁNCHEZ-CALDERÓN L, et al. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation[J]. Plant Signaling & Behavior, 2011, 6(3): 382-392. DOI: 10.4161/psb.6.3.14160
doi: 10.4161/psb.6.3.14160
|
39 |
ZHANG H Y, YANG Y M, SUN C Y, et al. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean[J]. Plant, Cell & Environment, 2020, 43(9): 2080-2094. DOI: 10.1111/pce.13816
doi: 10.1111/pce.13816
|
40 |
SONG L, YU H P, DONG J S, et al. The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation[J]. PLoS Genetics, 2016, 12(7): e1006194. DOI: 10.1371/journal.pgen.1006194
doi: 10.1371/journal.pgen.1006194
|
41 |
KUMAR P, KUMAR T, SINGH S, et al. Potassium: a key modulator for cell homeostasis[J]. Journal of Biotechnology, 2020, 324: 198-210. DOI: 10.1016/j.jbiotec.2020.10.018
doi: 10.1016/j.jbiotec.2020.10.018
|
42 |
JUNG J Y, SHIN R, SCHACHTMAN D P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis [J]. The Plant Cell, 2009, 21(2): 607-621. DOI: 10.1105/tpc.108.063099
doi: 10.1105/tpc.108.063099
|
43 |
FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: initial assessment[J]. Applied Clay Science, 2014, 101: 119-127. DOI: 10.1016/j.clay.2014.07.026
doi: 10.1016/j.clay.2014.07.026
|
44 |
CHÉREL I, LEFOULON C, BOEGLIN M, et al. Molecular mechanisms involved in plant adaptation to low K+ availability[J]. Journal of Experimental Botany, 2014, 65(3): 833-848. DOI: 10.1093/jxb/ert402
doi: 10.1093/jxb/ert402
|
45 |
HUANG L L, JIANG Q N, WU J Y, et al. Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis [J]. Plant Molecular Biology, 2020, 102(1/2): 143-158. DOI: 10.1007/s11103-019-00937-4
doi: 10.1007/s11103-019-00937-4
|
46 |
WAWRZYŃSKA A, MONIUSZKO G, SIRKO A. Links between ethylene and sulfur nutrition: a regulatory interplay or just metabolite association?[J]. Frontiers in Plant Science, 2015, 6: 1053. DOI: 10.3389/fpls.2015.01053
doi: 10.3389/fpls.2015.01053
|
47 |
MURAD M AL, RAZI K, BENJAMIN L K, et al. Ethylene regulates sulfur acquisition by regulating the expression of sulfate transporter genes in oilseed rape[J]. Physiologia Plantarum, 2021, 171(4): 533-545. DOI: 10.1111/ppl.13157
doi: 10.1111/ppl.13157
|
48 |
MARUYAMA-NAKASHITA A, NAKAMURA Y, TOHGE T, et al. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism[J]. The Plant Cell, 2006, 18(11): 3235-3251. DOI: 10.1105/tpc.106.046458
doi: 10.1105/tpc.106.046458
|
49 |
WAWRZYŃSKA A, SIRKO A.EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor[J]. Plant Science, 2016, 253: 50-57. DOI: 10.1016/j.plantsci.2016.09.002
doi: 10.1016/j.plantsci.2016.09.002
|
50 |
DIETZEN C, KOPRIVOVA A, WHITCOMB S J, et al. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response[J]. Plant Physiology, 2020, 184(4): 2120-2136. DOI: 10.1104/pp.20.01192
doi: 10.1104/pp.20.01192
|
51 |
CHEN H F, ZHANG Q, WANG X R, et al. Nitrogen form-mediated ethylene signal regulates root-to-shoot K+ translocation via NRT1.5 [J]. Plant, Cell & Environment, 2021, 44(12): 3806-3818. DOI: 10.1111/pce.14182
doi: 10.1111/pce.14182
|
52 |
IQBAL N, TRIVELLINI A, MASOOD A, et al. Current understanding on ethylene signaling in plants: the influence of nutrient availability[J]. Plant Physiology and Biochemistry, 2013, 73: 128-138. DOI: 10.1016/j.plaphy.2013.09.011
doi: 10.1016/j.plaphy.2013.09.011
|
53 |
KHAN M I R, TRIVELLINI A, FATMA M, et al. Role of ethylene in responses of plants to nitrogen availability[J]. Frontiers in Plant Science, 2015, 6: 927. DOI: 10.3389/fpls.2015.00927
doi: 10.3389/fpls.2015.00927
|
54 |
VIDAL E A, ALVAREZ J M, ARAUS V, et al. Nitrate in 2020: thirty years from transport to signaling networks[J]. The Plant Cell, 2020, 32(7): 2094-2119. DOI: 10.1105/tpc.19.00748
doi: 10.1105/tpc.19.00748
|
55 |
ZHENG D C, HAN X, AN Y, et al. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis [J]. Plant, Cell & Environment, 2013, 36(7): 1328-1337. DOI: 10.1111/pce.12062
doi: 10.1111/pce.12062
|
56 |
YU H L, LUO N, SUN L C, et al. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling[J]. Journal of Experimental Botany, 2012, 63(12): 4527-4538. DOI: 10.1093/jxb/ers131
doi: 10.1093/jxb/ers131
|
57 |
LEWIS D R, NEGI S, SUKUMAR P, et al. Ethylene inhibits lateral root development, increases IAA transport and expres-sion of PIN3 and PIN7 auxin efflux carriers[J]. Development, 2011, 138(16): 3485-3495. DOI: 10.1242/dev.065102
doi: 10.1242/dev.065102
|
58 |
LOPEZ-BUCIO J, CRUZ-RAMIREZ A, HERRERA-ESTRELLA L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6(3): 280-287. DOI: 10.1016/s1369-5266(03)00035-9
doi: 10.1016/s1369-5266(03)00035-9
|
59 |
MUDAY G K, RAHMAN A, BINDER B M. Auxin and ethylene: collaborators or competitors?[J]. Trends in Plant Science, 2012, 17(4): 181-195. DOI: 10.1016/j.tplants.2012.02.001
doi: 10.1016/j.tplants.2012.02.001
|
60 |
SWARUP R, PERRY P, HAGENBEEK D, et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation[J]. The Plant Cell, 2007, 19(7): 2186-2196. DOI: 10.1105/tpc.107.052100
doi: 10.1105/tpc.107.052100
|
61 |
ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998. DOI: 10.1105/tpc.114.129296
doi: 10.1105/tpc.114.129296
|
62 |
MCCLELLAN C A, CHANG C. The role of protein turnover in ethylene biosynthesis and response[J]. Plant Science, 2008, 175(1/2): 24-31. DOI: 10.1016/j.plantsci.2008.01.004
doi: 10.1016/j.plantsci.2008.01.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|