Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (3): 303-313    DOI: 10.3785/j.issn.1008-9209.2020.08.251
作物栽培与生理     
甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析
朱乐(),赵鑫泽,蒋立希()
浙江大学农业与生物技术学院作物科学研究所/浙江省作物种质资源重点实验室,杭州 310058
Genome-wide identification and analysis of potassium ion transporter HAK/KUP/KT family in rapeseed (Brassica napus L.)
Le ZHU(),Xinze ZHAO,Lixi JIANG()
Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University/Zhejiang Key Laboratory of Crop Gene Resources, Hangzhou 310058, China
 全文: PDF(3485 KB)   HTML
摘要:

钾离子转运载体HAK/KUP/KT(high-affinity K/K uptake permease/K transporter)家族成员在植物对钾(K)的吸收和转运以及植物生长发育、耐盐性和渗透势的调节中起着重要作用。本研究以甘蓝型油菜(Brassica napus L.)为材料,共鉴定出45个HAK/KUP/KT基因,分别命名为BnHAK1BnHAK45,并对油菜中的HAK/KUP/KT基因家族进行基因结构、进化和表达以及染色体定位分析。结果表明,甘蓝型油菜中的HAK/KUP/KT基因家族在染色体上呈现不均匀分布,其中在A01号染色体上分布最多,有5个BnHAKs基因。根据不同物种HAK/KUP/KT蛋白构建系统进化树,将其分为2个组群,其中双子叶植物中的拟南芥、甘蓝、白菜和甘蓝型油菜基因的保守性更强,亲缘关系更近。在表达量分析中,尽管HAK/KUP/KT基因家族的表达模式各不相同,但是总体而言,它们在根中的表达量最高,在角果中的表达量最低,这说明不同HAK/KUP/KT基因家族成员的分工是不同的。BnHAK4、BnHAK9基因在叶中特异性高表达,BnHAK11、BnHAK18BnHAK23在根中特异性高表达,BnHAK7和BnHAK17在花中的表达量最高,说明该基因家族的表达具有组织特异性。本研究为进一步揭示甘蓝型油菜HAK/KUP/KT基因家族的功能机制提供了相应的参考依据。

关键词: 甘蓝型油菜钾离子转运载体HAK/KUP/KT基因家族分析    
Abstract:

The high-affinity K/K uptake permease/K transporter (HAK/KUP/KT) family members play important roles in the absorption and transport of potassium (K), regulations of plant growth and development, modulation/acquisition of salt tolerance, and osmotic potential regulation/control. However, this gene family has not been thoroughly studied in Brassica napus. In this study, forty-five BnHAK genes (BnHAK1-BnHAK45) were identified in the B. napus reference genome, and bioinformatic methods were used to resolve the gene structures, evolutionary analysis, expression patterns and chromosome position in different tissues of rape. The results showed that the members of the HAK/KUP/KT gene family were unevenly distributed on the chromosomes, with the most of them located on chromosome A01 which had five BnHAK genes. Phylogenetic analysis of HAK/KUP/KT proteins from multiple species showed that they could be divided into two groups. Among them, Arabidopsis, B. oleracea, B. rapa and B. napus had stronger gene conservation and closer genetic relationships. Although the expression patterns of the HAK/KUP/KT genes were different, in general, they exhibited highest and lowest expression levels in the roots and siliques, respectively, and this showed that there was a functional division of different HAK/KUP/KT gene family members. The expression levels of BnHAK4 and BnHAK9 were highest in the leaves, whilst the expression levels of BnHAK11, BnHAK18, and BnHAK23 were highest in the roots, and BnHAK7 and BnHAK17 were mostly expressed in the flowers, which indicated that the expression of this gene family had tissue specificity. This study provides a reference for further revealing the functional mechanism of HAK/KUP/KT gene family in B. napus.

Key words: Brassica napus    potassium ion transporter    HAK/KUP/KT    gene family analysis
收稿日期: 2020-08-25 出版日期: 2021-06-25
CLC:  S 565.4  
基金资助: 国家自然科学基金(31961143008)
通讯作者: 蒋立希     E-mail: 11616028@zju.edu.cn;jianglx@zju.edu.cn
作者简介: 朱乐(https://orcid.org/0000-0001-8410-3717),E-mail:11616028@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱乐
赵鑫泽
蒋立希

引用本文:

朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.

Le ZHU,Xinze ZHAO,Lixi JIANG. Genome-wide identification and analysis of potassium ion transporter HAK/KUP/KT family in rapeseed (Brassica napus L.). Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 303-313.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.08.251        http://www.zjujournals.com/agr/CN/Y2021/V47/I3/303

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

HAK1-FCAACAATCCAAAGATGAGCAGCGAC
HAK1-RGCTCCGATGAAGAGGAACCAAATG
HAK4-FCCTCCTCTTAGCTTACATGGGCCA
HAK4-RAACCTTGGGAAGCAGCCGAGA
HAK9-FGATGGGATTCTCACACCAGCTATGT
HAK9-RAGACGATGTAATACGGGTTCAGTGC
HAK13-FAGCCTCTTCCTTTTCATCCGCC
HAK13-RCTGGCTCGACCCAGTCACCG
HAK18-FGAAGCATGTGGGATTTGGACCA
HAK18-RGAGAGCTCCAATGATGTCTTCAGGG
HAK37-FAACAATCCAAAGATGAGCAGCGAC
HAK37-RGATAGGTGCAAAGAGCCAGCCTACT
ACTIN7-FGCTGACCGTATGAGCAAAG
ACTIN7-RAAGATGGATGGACCCGAC
表1  RT-qPCR引物序列
图1  甘蓝型油菜与其他植物HAK/KUP/KT蛋白的系统进化分析
图2  甘蓝型油菜HAK/KUP/KT基因家族的染色体定位
图3  甘蓝型油菜HAK/KUP/KT基因的系统发育、基因结构和蛋白结构域分析A. BnHAKs蛋白系统发育树分析;B. BnHAKs基因结构分析;C. BnHAKs蛋白的基序分析;D. 10种基序中的氨基酸保守性分析。UTR:非编码区;CDS:编码序列。
图4  甘蓝型油菜HAK/KUP/KT基因家族顺势作用元件分析
图5  甘蓝型油菜HAK/KUP/KT基因家族在不同组织中的表达量A. 转录表达分析;B. 荧光定量PCR表达分析。
1 HASANUZZAMAN M, BHUYAN M H M B, NAHAR K, et al. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018,8(3):31. DOI:10.3390/agronomy8030031
doi: 10.3390/agronomy8030031
2 AMRUTHA R N, SEKHAR P N, VARSHNEY R K, et al. Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Science, 2007,172(4):708-721. DOI:10.1016/j.plantsci.2006.11.019
doi: 10.1016/j.plantsci.2006.11.019
3 ASHLEY M K, GRANT M, GRABOY A. Plant responses to potassium deficiencies: a role for potassium transport proteins. Journal of Experimental Botany, 2006,57(2):425-436. DOI:10.1093/jxb/erj034
doi: 10.1093/jxb/erj034
4 WANG Y, WU W H. Regulation of potassium transport and signaling in plants. Science Direct, 2015,37(4):33. DOI:10.1016/j.pbi.2017.06.006
doi: 10.1016/j.pbi.2017.06.006
5 WANG M, ZHENG Q S, SHEN Q R, et al. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013,14(4):7370-7390. DOI:10.3390/ijms14047370
doi: 10.3390/ijms14047370
6 AHN S J, SHIN R, SCHACHTMAN D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiology, 2004,134(3):1135-1145. DOI:10.1104/pp.103.034660.
doi: 10.1104/pp.103.034660
7 GUPTA M, QIU X H, WANG L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008,280(5):437-452. DOI:10.1007/s00438-008-0377-7
doi: 10.1007/s00438-008-0377-7
8 VéRY A A, NIEVES-CORDONES M, DALY M, et al. Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species?Journal of Plant Physiology, 2014,171(9):748-769. DOI:10.1016/j.jplph.2014.01.011
doi: 10.1016/j.jplph.2014.01.011
9 WANG Y, WU W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013,64(1):451-476. DOI:10.1146/annurev-arplant-050312-120153
doi: 10.1146/annurev-arplant-050312-120153
10 李学文,游西龙,王艳.钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展.植物科学学报,2019,37(1):101-108. DOI:10.11913/PSJ.2095-0837.2019.10101
LI X W, YOU X L, WANG Y. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress. Plant Science Journal, 2019,37(1):101-108. (in Chinese with English abstract)
doi: 10.11913/PSJ.2095-0837.2019.10101
11 NIEVES-CORDONES M, MARTíNEZ V, BENITO B, et al. Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Frontiers in Plant Science, 2016,7:992. DOI:10.3389/fpls.2016.00992
doi: 10.3389/fpls.2016.00992
12 RUBIO F, SANTA-MARíA G E, RODRíGUEZ-NAVARRO A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 2000,109(1):34-43. DOI:10.1034/j.1399-3054.2000.100106.x
doi: 10.1034/j
13 CHEN G, HU Q D, LUO L, et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant, Cell & Environment, 2015,38(12):2747-2765. DOI:10.1111/pce.12585
doi: 10.1111/pce.12585
14 YANG T Y, ZHANG S, HU Y B, et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 2014,166(2):945-959. DOI:10.1104/pp.114.246520
doi: 10.1104/pp.114.246520
15 SHEN Y, SHEN L K, SHEN Z X, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell & Environment, 2015, 38(12):2766-2779. DOI:10.1111/pce.12586
doi: 10.1111/pce.12586
16 CHEN G, LIU C L, GAO Z Y, et al. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Frontiers in Plant Science, 2017,8:1885. DOI:10.3389/fpls.2017.01885
doi: 10.3389/fpls.2017.01885
17 高祥照,马文奇,崔勇,等.我国耕地土壤养分变化与肥料投入状况.植物营养与肥料学报,2000,6(4):363-369.
GAO X Z, MA W Q, CUI Y, et al. Changes of soil nutrient contents and input of nutrients in arable of China. Plant Nutrition and Fertilizers Science, 2000,6(4):363-369. (in Chinese with English abstract)
18 易九红,刘爱玉.作物钾效率基因型差异及缺钾反应.作物研究,2007,21(5):536-540. DOI:10.16848/j.cnki.issn.1001-5280.2007.s1.011
YI J H, LIU A Y. Genotype difference of potassium efficiency and potassium deficiency reaction in crops. Crop Research, 2007,21(5):536-540. (in Chinese)
doi: 10.16848/j.cnki.issn.1001-5280.2007.s1.011
19 WANG Y Z, Lü J H, CHEN D, et al. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome, 2018,61(10):755-765. DOI:10.1139/gen-2017-0254
doi: 10.1139/gen-2017-0254
20 FENG X M, WANG Y J, ZHANG N N, et al. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K+ stress in Saccharum. BMC Plant Biology, 2020,20:20. DOI:10.1186/s12870-019-2227-7
doi: 10.1186/s12870-019-2227-7
21 司伟娜,孙毅,李晓玉.栽培型与野生型辣椒HAK/KUP/KT基因家族的进化分析.安徽农业大学学报,2018,45(4):753-761. DOI:10.13610/j.cnki.1672-352x.20180825.021
SI W N, SUN Y, LI X Y. Evolutionary analysis of HAK/KUP/KT gene family in cultivated and wild peppers. Journal of Anhui Agricultural University, 2018,45(4):753-761. (in Chinese with English abstract)
doi: 10.13610/j.cnki.1672-352x.20180825.021
22 CHENG X Y, LIU X D, MAO W W, et al. Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2018,19(12):3969. DOI:10.3390/ijms19123969
doi: 10.3390/ijms19123969
23 晁毛妮,温青玉,张晋玉,等.大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析.西北植物学报,2017,37(2):239-249. DOI:10.7606/j.issn.1000-4025.2017.02.0239
CHAO M N, WEN Q Y, ZHANG J Y, et al. Identification and expression analysis of KUP/HAK/KT potassium transporter gene family in soybean [Glycine mac (L.) Merr.]. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(2):239-249. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2017.02.0239
24 OKADA T, YAMANE S, YAMAGUCHI M, et al. Characterization of rice KT/HAK/KUP potassium trans-porters and K+ uptake by HAK1 from Oryza sativa. Plant Biotechnology, 2018,35(2):101-111. DOI:10.5511/plantbiotechnology.18.0308a
doi: 10.5511/plantbiotechnology.18.0308a
25 LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23(21):2947-2948. DOI:10.1093/bioinformatics/btm404
doi: 10.1093/bioinformatics/btm404
26 赵艳,瓮巧云,马海莲,等.谷子ARF基因家族的鉴定与生物信息学分析.植物遗传资源学报,2016,17(3):547-554. DOI:10.13430/j.cnki.jpgr.2016.03.022
ZHAO Y, WENG Q Y, MA H L, et al. Genome-wide identification and bioinformatics analysis of ARF gene family in foxtail millet Setaria italica. Journal of Plant Genetic Resources, 2016,17(3):547-554. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.03.022
27 SUN F M, FAN G Y, HU Q, et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal, 2017,92(3):452-468. DOI:10.1111/tpj.13669
doi: 10.1111/tpj.13669
28 张毅,伍向苹,张芳,等.基于基因组数据解析中国油菜品种演化历程及方向.中国油料作物学报,2020,42(3):325-333. DOI:10.19802/j.issn.1007-9084.2019310
ZHANG Y, WU X P, ZHANG F, et al. Analysis of evolutionary history and future development of Chinese rapeseed varieties based on genomic data. Chinese Journal of Oil Crop Sciences, 2020,42(3):325-333. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019310
29 苏益,蔺万煌,马立英.植物高亲和性钾离子转运系统.安徽农业科学,2010,38(13):6646-6648.
SU Y, LIN W H, MA L Y. High-affinity potassium transport system in plants. Journal of Anhui Agricultural Sciences, 2010,38(13):6646-6648. (in Chinese with English abstract)
[1] 倪西源,黄吉祥,柳寒,潘兵,赵坚义. 应用分子标记辅助选育甘蓝型油菜杂交种的可行性[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 173-182.
[2] 王继变1,2, 陈洪成2,3, 陈玉波2,4, 张晓玉2,4, 徐海明1, 赵坚义2*. 通过条件QTL定位分析油菜不同脂肪酸组分对含油量性状的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 504-5125.
[3] 倪西源,徐小栋,黄吉祥,陈 飞,周伟军,赵坚义. 利用分子标记辅助选育油菜隐性上位互作核不育临保系[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 407-412.
[4] 徐小栋,陈飞,倪西源,张晓伟,赵坚义. 甘蓝型油菜分子距离与杂种优势和产量表型的相关分析[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 641-649.
[5] 吴建国  石春海  李再云  傅廷栋. 甘蓝型油菜与诸葛菜属间五倍体后代非整倍体的细胞遗传学研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 601-608.
[6] 唐桂香  周伟军. 提高甘蓝型油菜离体培养再生频率的研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(5): 527-530.