Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (2): 191-206    DOI: 10.3785/j.issn.1008-9209.2021.03.041
资源利用与环境保护     
有机肥部分替代化学氮肥的安全施用比例及环境容量研究——以典型土壤生菜种植为例
顾思婷1(),陈謇2,李志洋1,施加春1()
1.浙江大学土水资源与环境研究所,浙江省农业资源与环境重点实验室,杭州 310058
2.温岭市农业农村和水利局,浙江 台州 317500
Safety application ratio and environmental capacity of partial substitution of chemical nitrogen fertilizer with organic fertilizer: a case study of cultivation of lettuce in typical soils
Siting GU1(),Jian CHEN2,Zhiyang LI1,Jiachun SHI1()
1.Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
2.Bureau of Agriculture and Rural Affairs and Water Resource of Wenling, Taizhou 317500, Zhejiang, China
 全文: PDF(1066 KB)   HTML
摘要:

通过对浙江省9种不同典型土壤进行生菜种植盆栽试验,并联合多元线性回归和土壤环境静态容量模型,研究不同有机肥替代化学氮肥比例对土壤环境质量、农产品产量及质量和土壤环境容量变化的影响。结果表明:有机肥部分替代化学氮肥施用增加了土壤全氮和有机质的含量(除黄松土外),且显著增加了生菜产量。不同施肥处理下不同土壤类型及其生菜地上部重金属累积差异明显,有机肥施用显著增加了小粉土、培泥砂土和黄斑田的镉(Cd)含量。施加有机肥后,在黄斑田、小粉土和培泥砂土上种植的生菜地上部Cd、铬(Cr)、砷(As)和铅(Pb)含量显著上升,但黄红壤中的显著下降。在培泥砂土和小粉土上种植生菜的有机肥部分替代化学氮肥的安全施用推荐比例均为10%,青紫泥田和黄红壤均为20%,黄斑田和黄松土均为30%,淡涂粘田为40%。随着有机肥替代施用年限的增长,土壤重金属环境容量逐渐降低,因此,严格管控有机肥的施用量及施用年限有助于保障土壤环境质量和农产品的安全。

关键词: 生菜种植有机肥部分替代化学氮肥重金属土壤环境容量    
Abstract:

Pot experiments of lettuce in nine different typical types of soils, combined with multiple linear regression and static capacity model of soil environment, were conducted, and the effects of different ratios of substituting chemical nitrogen fertilizer by organic fertilizer on soil environmental quality, yield, and the safety of agricultural products and soil environmental capacity were studied. The results showed that partial substitution of chemical nitrogen fertilizer with organic fertilizer increased the total nitrogen and organic matter contents of the soil (except fluvio-marine yellow loamy soil), and significantly increased the yield of lettuce. The accumulations of heavy metals in different soil types and lettuce shoots under different fertilization treatments were significantly different. The application of organic fertilizer significantly increased the Cd contents in powdery-loamy paddy soil, silt-clayey yellow mettled paddy soil and hapl fluvo-aquic loamy soil. The contents of Cd, Cr, As, and Pb of lettuce planted in silt-clayey yellow mettled paddy soil, powdery-loamy paddy soil and hapl fluvo-aquic loamy soil all increased significantly after applying organic fertilizer, but decreased significantly in yellow-red soil. For the pot experiment with lettuce, the safety application ratios of organic fertilizer in hapl fluvo-aquic loamy soil, blue clayey paddy soil, silt-clayey yellow mettled paddy soil, powdery-loamy paddy soil, fluvio-marine yellow loamy soil, yellow-red soil and paddy field on desalting clayey polder were 10%, 20%, 30%, 10%, 30%, 20%, and 40%, respectively. The soil heavy metal environmental capacity decreased with the increase of application years of partial substitution of chemical nitrogen fertilizer with organic fertilizer, so it is important to strictly limit the application amount of organic fertilizer to protect the soil environment.

Key words: cultivation of lettuce    partial substitution of chemical nitrogen fertilizer with organic fertilizer    heavy metal    soil environmental capacity
收稿日期: 2021-03-04 出版日期: 2022-04-29
CLC:  X 53  
基金资助: 国家重点研发计划(2016YFD0200106-4)
通讯作者: 施加春     E-mail: 3140100491@zju.edu.cn;jcshi@zju.edu.cn
作者简介: 顾思婷(https://orcid.org/0000-0002-4787-1036),E-mail:3140100491@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
顾思婷
陈謇
李志洋
施加春

引用本文:

顾思婷,陈謇,李志洋,施加春. 有机肥部分替代化学氮肥的安全施用比例及环境容量研究——以典型土壤生菜种植为例[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 191-206.

Siting GU,Jian CHEN,Zhiyang LI,Jiachun SHI. Safety application ratio and environmental capacity of partial substitution of chemical nitrogen fertilizer with organic fertilizer: a case study of cultivation of lettuce in typical soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 191-206.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.041        https://www.zjujournals.com/agr/CN/Y2022/V48/I2/191

品种

Variety

土壤及有机肥类型

Soil and

manure types

pH

w(全氮)

TN/(g/kg)

w(有机质)

OM/%

电导率

EC/(mS/cm)

w(重金属)

Total HM/(mg/kg)

CdCrAsPbCuZn

正源463

Zhengyuan 463

黄斑田 SP7.200.641.390.070.0789.0911.8225.5522.3667.24
小粉土 PP7.690.490.940.120.1048.016.1820.8112.9868.39
培泥砂土 HL8.650.120.240.080.1251.5115.2012.538.9939.20

高华意大利全年

耐抽薹生菜

Italian bolting

resistant lettuce

黄泥砂田 PR5.881.000.740.030.3844.5912.4728.3419.4573.18
淡涂粘田 PC8.161.232.140.300.2185.068.7135.0124.1098.50
青紫泥田 BP6.942.431.870.090.2973.778.6647.4327.59102.23
黄松土 FL8.320.240.340.070.0954.775.0915.278.2347.68
黄红壤 YR6.870.792.360.060.1251.088.7819.3220.1958.27
洪积泥砂田 DP7.762.651.530.201.2871.6310.05175.80326.45222.98
猪粪有机肥 SM8.321.2146.204.350.5426.982.8731.5861.05240.20
表1  生菜盆栽试验供试土壤及有机肥的基本理化性质及其重金属含量
图1  有机肥部分替代化学氮肥施用对土壤pH的影响CK:不施氮肥;F:仅施氮肥(1.54 g尿素);M1:1.39 g尿素+2.62 g有机肥;M2:1.23 g尿素+5.24 g有机肥;M3:1.08 g尿素+7.87 g有机肥;M4:0.93 g尿素+10.49 g有机肥。短栅上不同小写字母表示同种土壤类型的不同处理间在P<0.05水平差异有统计学意义;n=3。下同。
图2  有机肥部分替代化学氮肥施用对土壤OM含量的影响
图3  有机肥部分替代化学氮肥施用对土壤TN含量的影响
图4  有机肥部分替代化学氮肥施用对土壤Cd、Cr、As、Pb含量的影响
  
处理Treatment黄斑田 SP小粉土 PP培泥砂土 HL黄泥砂田 PR淡涂粘田 PC

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

CK59.12b44.62c53.21f46.91b63.60b
F74.09ab25.3180.11abc79.55158.97e198.7863.18ab34.6981.66b28.40
M193.53ab58.1984.10ab88.48173.03d225.2248.63b3.6685.20ab33.95
M295.48ab61.49106.47ab138.63228.27b328.9682.81a76.5387.55ab37.65
M3108.28a83.14113.68a154.79238.35a347.9976.43a62.9389.89ab41.34
M4114.21a93.1779.79abc78.83220.12c313.7262.64ab33.54112.48a76.85
处理Treatment青紫泥田 BP黄松土 FL黄红壤 YR洪积泥砂田 DP

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

CK55.46c56.05e95.60d154.19d
F117.56ab111.97127.69d127.82155.55b62.71248.36b61.07
M192.18b66.20130.75cd133.28156.80b64.01186.94c21.24
M2125.91a127.03141.04ab151.63173.52a81.51238.46b54.66
M3107.59ab93.99148.46a164.86126.23c32.04274.73a78.17
M4105.46ab90.16138.84bc147.70159.62b66.97180.26c16.91
表2  有机肥部分替代化学氮肥施用对生菜产量的影响
  
图5  有机肥部分替代化学氮肥施用对生菜地上部Cd、Cr、As、Pb含量的影响
土壤类型 Soil type元素 Element多元线性回归方程 Multiple linear regression equationR2

小粉土

PP

Cdy =0.64a+0.075b-0.560.55
Cry =0.058a+0.51d-2.860.71
Asy =-0.25b+0.26c-0.91e+2.000.75
Pby =0.032a-0.470.42

黄斑田

SP

Cdy =0.45a+0.021b-0.0990.83
Cry =0.009 8a-0.730.87
Asy =0.019a+0.13c-0.240.77
Pby =-0.063+0.010a0.61

培泥砂土

HL

Cdy =0.015+0.56a+0.000 058f0.83
Cry =0.030a+0.43c-1.510.87
Asy =0.73c+0.150.46
Pby =0.32c+0.0660.71

青紫泥田

BP

Cdy =-0.090c+0.001 9f+0.120.34
Cry =0.013a+0.21b+0.12c+0.002 8f-3.060.82
Asy =0.004 2a-0.007 0b-0.000 082f+0.0300.59
Pby =-0.062 8b+0.4560.58

淡涂粘田

PC

Cdy =0.14d+0.017c-0.110.60
Cry =-0.007 0f+1.090.28
Asy =-0.012e-0.015d+0.0310.44
Pby =-0.085e+0.0460.45

黄泥砂田

PR

Cdy=1.32d-0.990.25
Cry =-7.54e+0.52c+1.870.33
Asy =-0.006 3c+0.0280.21
Pby =-0.054b+0.360.21

黄松土

FL

Cdy =0.030d-0.000 035f +0.008 40.47
Cry =0.001 1a+0.45e-0.000 15f-0.0400.45
Asy =0.000 031f+0.001 90.45
Pby =-0.000 11f+0.0320.35

黄红壤

YR

Cdy =0.064b-0.280.54
Cry =0.015b+0.019d-0.0970.76
Asy =0.002 1a+0.003 4b-0.007 6c-0.0170.72
Pby =0.016b-0.0620.24

洪积泥砂田

DP

Cdy =0.47a-0.20b+1.340.68
Cry =0.027c+0.002 10.28
Asy =-0.001 0b-0.009 5c+0.0260.70
Pby =-0.059b-0.51e+0.640.48
表3  生菜地上部Cd、Cr、As、Pb含量与各因子的多元线性回归方程

土壤类型

Soil type

元素

Element

10年

10 years

20年

20 years

50年

50 years

100年

100 years

小粉土

PP

Cd0.0400.0200.0080.004
Cr1.340.670.270.13
As4.232.120.850.42
Pb0.7500.3700.1500.075

黄斑田

SP

Cd0.0590.0300.0120.006
Cr8.044.021.610.80
As3.991.990.800.40
Pb2.341.170.470.23

培泥砂土

HL

Cd0.0380.0190.0080.004
Cr2.481.240.500.25
As2.201.100.440.22
Pb35.4317.727.093.54

青紫泥田

BP

Cd0.002 00.001 00.000 50.000 2
Cr9.614.811.920.96
As4.802.400.960.48
Pb16.338.163.271.63

淡涂粘田

PC

Cd0.0890.0440.0180.009
Cr37.1118.567.423.71
As3.671.830.730.37
Pb30.3715.196.083.04

黄松土

FL

Cd0.1200.0580.0230.012
Cr43.9321.968.794.39
As4.482.240.900.45
Pb34.8217.416.963.48

黄红壤

YR

Cd0.0400.0200.0080.004
Cr33.5016.756.703.35
As4.772.390.960.48
Pb22.6511.334.532.27
表4  平均每年土壤重金属环境容量 (kg/hm2)

土壤类型

Soil type

CKFM1M2M3M4

均值

Mean

小粉土

PP

0.749b0.641c0.665c0.886a0.636c0.773b0.725

黄斑田

SP

1.299a0.763bc0.742c0.761bc0.732c0.804b0.850

培泥砂土

HL

0.739c0.985a0.791bc0.861b0.827bc0.864b0.844

青紫泥田

BP

0.299a0.223b0.296a0.292a0.306a0.266ab0.280

淡涂粘田

PC

0.264c0.449ab0.361bc0.436ab0.474ab0.491a0.413

黄泥砂田

PR

1.015c1.515a1.236abc1.127bc1.412ab0.918c1.204

黄松土

FL

0.104c0.135b0.118bc0.112c0.113c0.160a0.124

黄红壤

YR

0.794a0.763a0.600c0.540c0.723ab0.630bc0.675

洪积泥砂田

DP

0.316d0.326cd0.366c0.454b0.506a0.434b0.400
表5  不同土壤在不同有机肥替代处理下生菜地上部重金属Cd富集系数
1 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181. DOI:10.16258/j.cnki.1674-5906.2016.01.026
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2016.01.026
2 HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707: 136121. DOI:10.1016/j.scitotenv.2019.136121
doi: 10.1016/j.scitotenv.2019.136121
3 中华人民共和国农业部.到2020年化肥使用量零增长行动方案[EB/OL].(2015-02-17)[2021-06-07]. . DOI:10.3969/j.issn.1008-7117.2015.02.001
Ministry of Agriculture of the People’s Republic of China. Zero Growth in Fertilizer Use by 2020[EB/OL].(2015-02-17)[2021-06-07].
doi: 10.3969/j.issn.1008-7117.2015.02.001
4 YANG S Y, ZHAO J, CHANG S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: a synthesis[J]. Environment International, 2019, 128: 165-174. DOI:10.1016/j.envint.2019.04.044
doi: 10.1016/j.envint.2019.04.044
5 WAN Y N, HUANG Q Q, WANG Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure[J]. Journal of Hazardous Materials, 2020, 384: 121293. DOI:10.1016/j.jhazmat.2019.121293
doi: 10.1016/j.jhazmat.2019.121293
6 WANG X B, LIU W X, LI Z G, et al. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation[J]. Pedosphere, 2020, 30(4): 555-562. DOI:10.1016/S1002-0160(17)60457-0
doi: 10.1016/S1002-0160(17)60457-0
7 徐一兰,金自力,刘唐兴,等.不同施肥措施对双季稻田土壤和大麦植株镉累积的影响[J].生态环境学报,2017,26(7):1235-1241. DOI:10.16258/j.cnki.1674-5906.2017.07.021
XU Y L, JIN Z L, LIU T X, et al. Effects of long-term fertilization on heavy metal Cd accumulation in the surface soil and barley plant of double-cropping paddy rice system[J]. Ecology and Environmental Sciences, 2017, 26(7): 1235-1241. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2017.07.021
8 何其辉,谭长银,曹雪莹,等.肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J].环境科学研究,2018,31(5):942-951. DOI:10.13198/j.issn.1001-6929.2018.01.18
HE Q H, TAN C Y, CAO X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedling[J]. Research of Environmental Sciences, 2018, 31(5): 942-951. (in Chinese with English abstract)
doi: 10.13198/j.issn.1001-6929.2018.01.18
9 GRüTER R, COSTEROUSSE B, MAYER J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Science of the Total Environment, 2019, 669: 608-620. DOI:10.1016/j.scitotenv.2019.03.112
doi: 10.1016/j.scitotenv.2019.03.112
10 张杨珠,龙怀玉,汤宏,等.不同施肥结构对两种叶菜类蔬菜的产量及肥料养分吸收与利用的影响[J].湖南农业科学,2013(19):43-47. DOI:10.16498/j.cnki.hnnykx.2013.19.032
ZHANG Y Z, LONG H Y, TANG H, et al. Influences of different fertilization structures on yield and nutrients uptake and nutrients use efficiency of two kinds of leafy vegetable[J]. Hunan Agricultural Sciences, 2013(19): 43-47. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2013.19.032
11 周雅,毕春娟,周枭潇,等.上海市郊工业区附近蔬菜中重金属分布及其健康风险[J].环境科学,2017,38(12):5292-5298. DOI:10.13227/j.hjkx.201702104
ZHOU Y, BI C J, ZHOU X X, et al. Distribution characteristics and health risk for heavy metals in vegetables near the industrial areas in Shanghai[J]. Environmental Science, 2017, 38(12): 5292-5298. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201702104
12 武星魁,姜振萃,陆志新,等.有机肥部分替代化肥氮对叶菜产量和环境效应的影响[J].中国生态农业学报(中英文),2020,28(3):349-356. DOI:10.13930/j.cnki.cjea.190761
WU X K, JIANG Z C, LU Z X, et al. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 349-356. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.190761
13 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. DOI:10.1080/0005772x.2000.11099478
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
doi: 10.1080/0005772x.2000.11099478
14 成杰明,于金光,王明聪.土壤重金属环境容量研究[M].北京:科学出版社,2017.
CHENG J M, YU J G, WANG M C. Study on Environmental Capacity of Soil Heavy Metals[M]. Beijing: Science Press, 2017. (in Chinese)
15 李志洋.有机肥部分替代化学氮肥安全施用及土壤环境容量研究:以生菜和水稻为例[D].杭州:浙江大学,2018:43-44.
LI Z Y. Safety application of organic manure partial substitution chemical nitrogen fertilizer and soil environmental capacity: taking lettuce and rice as example[D]. Hangzhou: Zhejiang University, 2018: 43-44. (in Chinese with English abstract)
16 中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): [S].北京:中国标准出版社,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality Risk Control Standard of Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Beijing: Standards Press of China, 2018. (in Chinese)
17 中华人民共和国国家卫生健康委员会. 食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2017. DOI:10.3971/j.issn.1000-8578.2022.03.0001
National Health Commission of the People’s Republic of China. State Criteria for Food Safety Contaminant Limits in Food: GB 2762—2017 [S]. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.3971/j.issn.1000-8578.2022.03.0001
18 CAI Z J, WANG B, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270. DOI:10.1007/s11368-014-0989-y
doi: 10.1007/s11368-014-0989-y
19 WANG L, BUTTERLY C R, TIAN W, et al. Effects of fertilization practices on aluminum fractions and species in a wheat soil[J]. Journal of Soils and Sediments, 2016, 16(7): 1933-1943. DOI:10.1007/s11368-016-1380-y
doi: 10.1007/s11368-016-1380-y
20 XU J M, TANG C, CHEN Z L. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology & Biochemistry, 2006, 38(4): 709-719. DOI:10.1016/j.soilbio.2005.06.022
doi: 10.1016/j.soilbio.2005.06.022
21 CAI A D, XU M G, WANG B, et al. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil and Tillage Research, 2019, 189: 168-175. DOI:10.1016/j.still.2018.12.022
doi: 10.1016/j.still.2018.12.022
22 CAI A D, XU H, SHAO X F, et al. Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system[J]. PLoS ONE, 2016, 11(3): e152521. DOI:10.1371/journal.pone.0152521
doi: 10.1371/journal.pone.0152521
23 GONG Q, CHEN P Z, SHI R G, et al. Health assessment of trace metal concentrations in organic fertilizer in Northern China[J]. International Journal of Environmental Research and Public Health, 2019, 16(6): 1031. DOI:10.3390/ijerph16061031
doi: 10.3390/ijerph16061031
24 穆虹宇,庄重,李彦明,等.我国畜禽粪便重金属含量特征及土壤累积风险分析[J].环境科学,2020,41(2):986-996. DOI:10.13227/j.hjkx.201903078
MU H Y, ZHUANG Z, LI Y M, et al. Heavy metal contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 2020, 41(2): 986-996. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201903078
25 何梦媛,董同喜,茹淑华,等.畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J].环境科学,2017,38(4):1576-1586. DOI:10.13227/j.hjkx.201609227
HE M Y, DONG T X, RU S H, et al. Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure[J]. Environmental Science, 2017, 38(4): 1576-1586. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201609227
26 MA J F, CHEN Y P, ANTONIADIS V, et al. Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil[J]. Journal of Hazardous Materials, 2020, 399: 123095. DOI:10.1016/j.jhazmat.2020.123095
doi: 10.1016/j.jhazmat.2020.123095
27 黄小洋,邵劲松,马运涛.施用猪粪有机肥对土壤环境质量的影响[J].河南农业科学,2017,46(11):60-68. DOI:10.15933/j.cnki.1004-3268.2017.11.011
HUANG X Y, SHAO J S, MA Y T. Effects of the application of pig manure organic fertilizers on soil environment quality[J]. Journal of Henan Agricultural Sciences, 2017, 46(11): 60-68. (in Chinese with English abstract)
doi: 10.15933/j.cnki.1004-3268.2017.11.011
28 夏文建,张丽芳,刘增兵,等.长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J].环境科学,2021,42(5):1-13. DOI:10.13227/j.hjkx.202008094
XIA W J, ZHANG L F, LIU Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 2021, 42(5): 1-13. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202008094
29 XIAO A W, OUYANG Y, LI W C, et al. Effect of organic manure on Cd and As accumulation in brown rice and grain yield in Cd-As-contaminated paddy fields[J]. Environmental Science and Pollution Research, 2017, 24(10): 9111-9121. DOI:10.1007/s11356-017-8460-4
doi: 10.1007/s11356-017-8460-4
30 方成,代子雯,李伟明,等.化肥减施配施不同有机肥对甜糯玉米产量和品质的影响[J].生态学杂志,2021,40(5):1347-1355. DOI:10.13292/j.1000-4890.202105.003
FANG C, DAI Z W, LI W M, et al. Effects of reduced chemical fertilizer with organic fertilizer application on the yield and grain quality of sweet-waxy corn[J]. Chinese Journal of Ecology, 2021, 40(5): 1347-1355. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202105.003
31 ZHEN H Y, JIA L, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263: 114552. DOI:10.1016/j.envpol.2020.114552
doi: 10.1016/j.envpol.2020.114552
32 李兴菊,王定勇,叶展.水溶性有机质对镉在土壤中吸附行为的影响[J].水土保持学报,2007,21(2):159-162. DOI:10.3321/j.issn:1009-2242.2007.02.040
LI X J, WANG D Y, YE Z. Cadmium adsorption in soil influenced by dissolved organic matters derived from pig manure and rice straw[J]. Journal of Soil and Water Conservation, 2007, 21(2): 159-162. (in Chinese with English abstract)
doi: 10.3321/j.issn:1009-2242.2007.02.040
33 YU Y, WAN Y N, CAMARA A Y, et al. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice[J]. Chemosphere, 2018, 196: 303-310. DOI:10.1016/j.chemo sphere.2018.01.002
doi: 10.1016/j.chemo
34 LIU L N, CHEN H S, CAI P, et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost[J]. Journal of Hazardous Materials, 2009, 163: 563-567. DOI:10.1016/j.jhazmat.2008.07.004
doi: 10.1016/j.jhazmat.2008.07.004
35 WEI Z M, ZHAO X Y, ZHU C W, et al. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology[J]. Chemosphere, 2014, 95: 261-267. DOI:10.1016/j.chemo sphere.2013.08.087
doi: 10.1016/j.chemo
[1] 张富贵,成晓梦,马宏宏,孙彬彬,彭敏. 科学构建土壤重金属高背景区生态风险评价方法的探讨[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 57-67.
[2] 周其耀,倪元君,徐顺安,王琼,詹丽钏,冯英. 叶面调理剂对浙江东部镉污染农田水稻主栽品种安全生产的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 768-776.
[3] 杨博,张波,闫培洁,王莹捷,吴娟弟,张瑜,韩舜愈. 甘肃省嘉峪关市酿酒葡萄园土壤重金属空间分布特征及风险评价[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 777-786.
[4] 童文彬,曹雪蕊,江建锋,王小子,刘国群,宋建忠,AFSHEEN Zehra,杨肖娥. 超积累东南景天与油料作物轮间作修复农田镉铅污染的技术模式研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 212-222.
[5] 傅宇,张鹏,任俊丽,孙秀梅,郝青,杨承虎. 热解温度对不同大型海藻基生物炭中重金属特征的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 727-736.
[6] 邓美华,朱有为,段丽丽,沈菁,冯英. 农田土壤重金属污染“边生产边修复”综合防治技术模式解析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 135-150.
[7] 费徐峰,任周桥,楼昭涵,肖锐,吕晓男. 基于贝叶斯最大熵和辅助信息的土壤重金属含量空间预测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 452-459.
[8] 罗继鹏, 陶琦, 吴可人, 李廷强. 超积累植物内生微生物群落组成特征及其功能研究进展 [J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 515-529.
[9] 徐长春,郑戈,林友华. 国家重点研发计划“农业面源和重金属污染农田综合防治与修复技术研发”专项解析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 657-662.
[10] 孙叶芳,邢海,吴卫红,闻秀娟,顾超,叶昆,顾国平. 磷肥对铅锌矿区土壤-白菜中重金属积累的阻控[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 787-796.
[11] 张薇,施加春. 不同钝化剂与蚯蚓联合处理对猪粪堆肥中铜锌的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 775-786.
[12] 刘晨,郭佳,赵敏,钟斌,郭华,侯淑贞,徐炜杰,杨芸,王任远,叶正钱,柳丹. 毛竹幼苗与伴矿景天间作对铜、镉、锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615-622.
[13] 张栋,刘兴元,赵红挺. 生物质炭对土壤无机污染物迁移行为影响研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 451-459.
[14] 李海光, 施加春*, 吴建军. 污染场地周边农田土壤重金属含量的空间变异特征及其污染源识别[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 325-334.
[15] 麻万诸;王浩;章明奎. 矿物改良剂对污染土壤中重金属多目标有效性的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 629-638.