Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (1): 57-67    DOI: 10.3785/j.issn.1008-9209.2021.03.011
资源利用与环境保护     
科学构建土壤重金属高背景区生态风险评价方法的探讨
张富贵1,2,3,4(),成晓梦1,2,3,马宏宏1,2,3,孙彬彬1,2,3,彭敏1,2,3
1.中国地质调查局土地质量地球化学调查评价研究中心,河北 廊坊 065000
2.中国地质科学院地球物理地球化学勘查研究所,河北 廊坊 065000
3.中国地质调查局地球表层碳-汞地球化学循环重点实验室,河北 廊坊 065000
4.成都理工大学地球科学学院,成都 610059
Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals
Fugui ZHANG1,2,3,4(),Xiaomeng CHENG1,2,3,Honghong MA1,2,3,Binbin SUN1,2,3,Min PENG1,2,3
1.Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, Hebei, China
2.Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, Hebei, China
3.Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth’s Critical Zone, China Geological Survey, Langfang 065000, Hebei, China
4.College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
 全文: PDF(3894 KB)   HTML
摘要:

为了科学地识别和评价重金属含量高背景区中土壤重金属污染情况和生态风险,在贵州省赫章县河镇乡采集玉米及其对应的根系土样品309组,并采集20件玉米根茎叶不同部位样品,测定其砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)和锌(Zn)8种重金属含量,根系土样品还分析了各重金属的形态(Cr未测)。研究发现:土壤重金属含量较高,表层土壤中8种重金属含量平均值远超过全国表层土壤背景值,Cd元素含量超出全国表层土壤背景值近7倍,土壤以酸性土为主,从重金属全量来看,研究区生态风险很高;土壤重金属As、Cu、Hg、Ni、Pb和Zn多以强有机结合态和残渣态形式存在,生物有效性较低,Cd的有效态组分较高。基于土壤重金属形态的生态风险统计结果显示,研究区生态风险主要是由Cd引起的,需要加强这部分土地的监管。在土壤-玉米系统中,生物富集系数和转运系数均较低,重金属难以在玉米中富集,玉米籽实中重金属含量不超标农作物重金属等级评价为安全级。本结果为进一步研究重金属元素在岩-土-气-生介质间迁移转化规律,融合地质学、土壤学和生物学分析建立统一标准,科学评价生态环境风险和健康风险奠定了理论基础。

关键词: 土壤重金属生态风险评价形态土壤污染高背景区    
Abstract:

In order to scientifically identify and evaluate the soil heavy metal pollution and ecological risk in the background area with high heavy metal contents, 309 sets of maize and rhizosphere soil samples were collected in Hezhen Town of Hezhang County of Guizhou Province, and 20 maize samples from different parts of roots, stems and leaves were collected. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) were analyzed in topsoil and maize samples. Also, speciations of heavy metals in the rhizosphere soil samples were analyzed (Cr was not measured). The results showed that the contents of heavy metals in the soils were relatively high, and the averages were remarkably higher than the national soil background value (NBV), and the content of Cd element was nearly seven times higher than the NBV. The soil was mainly acidic, and the ecological risk was high based on the total amount of heavy metals. Speciation analysis indicated that heavy metals (As, Cu, Hg, Ni, Pb, and Zn) mainly existed in the forms of strong organic binding state and residual state, with low bioavailability, and the bioavailability of Cd was high. The ecological risk was mainly caused by Cd based on speciation of heavy metals. In the soil-corn system, the bioconcentration factors and translocation factors were both low, so heavy metals were difficult to be enriched in the corn. The contents of heavy metals in corn seeds did not exceed the standard, and the crops were safe. The above results provide a theoretical basis for further studying the migration and transformation law of heavy metals in rock-soil-gas-biota media, integrating geology, pedology and biology to establish a unified standard, and scientifically evaluating the ecological environment risk and health risk.

Key words: soil heavy metal    ecological risk assessment    speciation    soil contamination    high background area
收稿日期: 2021-03-01 出版日期: 2022-03-04
CLC:  X 53  
基金资助: 自然资源部中国地质调查局地质调查项目(DD20190522)
通讯作者: 张富贵     E-mail: zfugui@mail.cgs.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张富贵
成晓梦
马宏宏
孙彬彬
彭敏

引用本文:

张富贵,成晓梦,马宏宏,孙彬彬,彭敏. 科学构建土壤重金属高背景区生态风险评价方法的探讨[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 57-67.

Fugui ZHANG,Xiaomeng CHENG,Honghong MA,Binbin SUN,Min PENG. Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 57-67.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.011        https://www.zjujournals.com/agr/CN/Y2022/V48/I1/57

图1  研究区采样点和地质简图

地累积指数

Geoaccumulation index

污染程度

Pollution level

Igeo≤0无污染
0<Igeo≤1轻度污染
1<Igeo≤2中度污染
2<Igeo≤3中度-严重污染
3<Igeo≤4严重污染
4<Igeo≤5严重-极严重污染
Igeo>5极严重污染
表1  地累积指数分级标准

统计参数

Statistical parameter

pHAsCdCrCuHgNiPbZn
最小值 Min.4.311.40.1841.430.80.0226.715.285.0
最大值 Max.8.2381.66.87503.0308.01.15151.0152.0475.0
平均值 Mean6.019.51.16218.9114.90.1474.632.6157.7
中位值 Median5.687.61.00197.0108.00.1371.532.5152.0
变异系数 Coefficient of variation/%208663474261293023

贵州省表层土壤背景值[25]

Topsoil background values of Guizhou[25]

6.2020.00.6695.932.00.1139.135.299.5

中国表层土壤背景值[28]

Topsoil background values of China[28]

7.679.10.1563.023.00.0526.025.067.0

表层土壤筛选值[10]

Screening values for topsoil[10]

<6.540.00.22150.050.01.8070.090.0200.0
6.5~7.530.00.30200.0100.02.40100.0120.0250.0
>7.525.00.60250.0100.03.40190.0170.0300.0
表2  研究区表层土壤重金属含量统计
图2  土壤重金属赋存形态分布特征

区域

Region

形态

Form

AsCdCrCuHgNiPbZn

研究区

Study area

F1+F20.4140.660.502.261.072.011.52
F3+F4+F528.6439.4718.6422.608.3842.0313.87
F6+F770.9519.8780.8675.1490.5555.9784.61

云南宣威市[18]

Xuanwei City, Yunnan[18]

F1+F2+F30.0838.411.450.083.270.780.110.12
F4+F5+F63.1734.7917.202.8742.0510.193.764.11
F796.7526.8081.3597.1354.6889.0396.1395.77

广西横县[19]

Hengxian County, Guangxi[19]

F1+F2+F31.1220.990.174.101.910.805.701.17
F4+F5+F66.5620.905.6912.9044.049.8112.905.47
F792.3258.1194.1483.0054.0589.3981.4093.36
表3  土壤重金属各组分赋存形态比例 (%)

元素

Element

根 Root茎 Stem叶 Leaf籽实 Grain

限量值[30]

Limited

value[30]

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

As0.171.340.490.040.190.070.100.260.180.010.040.040.5
Cd217.361 699.00839.6836.60468.75185.40108.141837.63599.785.4547.3114.77100.0
Cr4.4475.0617.650.665.231.431.007.063.120.100.170.131.0
Cu11.68347.868.355.3269.3915.416.0657.3918.821.383.452.10
Hg12.2552.4021.3310.9814.8512.659.3035.4518.980.502.011.3020.0
Ni1.5426.306.910.291.980.600.792.311.440.060.290.13
Pb0.7514.002.880.142.530.430.835.242.570.050.120.080.2
Zn9.2040.6120.385.3057.3514.4811.4242.9922.8911.5847.0520.46
表4  研究区玉米不同部位重金属元素含量统计

元素

Element

Igeo≤00<Igeo≤11<Igeo≤22<Igeo≤3

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量Sample

quantity

比例

Percentage/%

As30398.0641.2920.65
Cd11838.1915650.49299.3961.94
Cr8828.4813844.668326.86
Cu92.919530.7417757.28289.06
Hg23074.437122.9882.59
Ni5517.8024478.96103.24
Pb30297.7372.27
Zn6621.3624177.9920.65
表5  表层土壤重金属元素地累积指数等级分布情况
图3  土壤重金属形态生态风险评价等级划分标准[30]

元素

Element

等级1

Class 1

等级2

Class 2

等级3

Class 3

等级4

Class 4

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

生态风险评价

Ecological risk assessment

004012.9413242.7213744.34
As309100000000
Cd004012.9413142.4013844.66
Cu309100000000
Hg309100000000
Ni309100000000
Pb30699.0320.650010.32
Zn309100000000
表6  表层土壤重金属元素有效态等级分布情况
图4  研究区土壤重金属形态综合生态风险空间分布

元素

Element

生物富集系数 Bioconcentration factor转运系数 Translocation factor

最小值

Min.

最大值

Max.

平均值

Mean

标准偏差

Standard deviation

最小值

Min.

最大值

Max.

平均值

Mean

标准偏差

Standard deviation

As0.030.220.080.050.290.960.650.17
Hg0.090.350.170.070.040.160.080.04
Cr0.020.540.090.120.020.240.120.06
Ni0.020.400.090.090.070.610.260.18
Cu0.074.860.701.080.040.560.200.12
Zn0.050.260.120.050.544.202.031.07
Cd0.000.030.010.010.010.380.100.08
Pb0.020.370.090.090.030.520.220.12
表7  研究区重金属生物富集系数和转运系数统计
1 DROBNIK T , GREINER L , KELLER A , et al . Soil quality indicators: from soil functions to ecosystem services[J]. Ecological Indicators, 2018, 94: 151-169. DOI:10.1016/j.ecolind.2018.06.052
doi: 10.1016/j.ecolind.2018.06.052
2 LIANG J , FENG C T , ZENG G M , et al . Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225: 681-690. DOI:10.1016/j.envpol.2017.03.057
doi: 10.1016/j.envpol.2017.03.057
3 MWESIGYE A R , YOUNG S D , BAILEY E H , et al . Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: a pilot study[J]. Science of the Total Environment, 2016, 573: 366-375. DOI:10.1016/j.scitotenv.2016.08.125
doi: 10.1016/j.scitotenv.2016.08.125
4 PENG J Y , LI F X , ZHANG J Q , et al . Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province[J]. Environmental Geochemistry and Health, 2020, 42: 4369-4383. DOI:10.1007/s10653-019-00416-1
doi: 10.1007/s10653-019-00416-1
5 PENG M , ZHAO C D , MA H H , et al . Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: contamination assessment and source apportionment[J]. Journal of Geochemical Exploration, 2020, 208: 106403. DOI:10.1016/j.gexplo.2019.106403
doi: 10.1016/j.gexplo.2019.106403
6 RAI P K, LEE S S , ZHANG M , et al . Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365-385. DOI:10.1016/j.envint.2019.01.067
doi: 10.1016/j.envint.2019.01.067
7 QIN G W , NIU Z D , YU J D , et al . Soil heavy metal pollution and food safety in China: effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205. DOI:10.1016/j.chemosphere.2020.129205
doi: 10.1016/j.chemosphere.2020.129205
8 CHEN Z K , MUHAMMAD I , ZHANG Y X , et al . Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China[J]. Science of the Total Environment, 2021, 766: 142663. DOI:10.1016/j.scitotenv.2020.142663
doi: 10.1016/j.scitotenv.2020.142663
9 SAFARI Y , DELAVAR M A , ZHANG C , et al . Assessing cadmium risk in wheat grain using soil threshold values[J]. International Journal of Environmental Science and Technology, 2018, 15(4): 887-894. DOI:10.1007/s13762-017-1422-z
doi: 10.1007/s13762-017-1422-z
10 生态环境部 . 土壤环境质量 农用地土壤污染风险管控标准: [S].北京:中国环境出版集团,2018. DOI:10.3969/j.issn.1004-5538.2021.01.001
Ministry of Ecology and Environment of the People’s Republic of China . Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Beijing: China Environmental Publishing Group, 2018. (in Chinese)
doi: 10.3969/j.issn.1004-5538.2021.01.001
11 LI M , XI X H , XIAO G , et al . National multipurpose regional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014, 139: 21-30. DOI:10.1016/j.gexplo.2013.06.002
doi: 10.1016/j.gexplo.2013.06.002
12 李括,彭敏,赵传冬,等 .全国土地质量地球化学调查二十年[J].地学前缘,2019,26(6):128-158. DOI:10.13745/j.esf.sf.2019.8.25
LI K , PENG M , ZHAO C D , et al . Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. (in Chinese with English abstract)
doi: 10.13745/j.esf.sf.2019.8.25
13 CHEN H Y , TENG Y G , LU S J , et al . Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. DOI:10.1016/j.scitotenv.2015.01.025
doi: 10.1016/j.scitotenv.2015.01.025
14 TENG Y G , WU J , LU S J , et al . Soil and soil environmental quality monitoring in China: a review[J]. Environment International, 2014, 69: 177-199. DOI:10.1016/j.envint.2014.04.014
doi: 10.1016/j.envint.2014.04.014
15 TENG Y G , NI S J , WANG J S , et al . A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China[J]. Journal of Geochemical Exploration, 2010, 104(3): 118-127. DOI:10.1016/j.gexplo.2010.01.006
doi: 10.1016/j.gexplo.2010.01.006
16 中国地质调查局 .中国耕地地球化学调查报告[R].2015. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf
China Geological Survey . Report on the Geochemical Survey of Cultivated Land in China[R]. 2015. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf. (in Chinese)
17 CHEN H P , ZHANG W W , YANG X P , et al . Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. DOI:10.1016/j.chemosphere.2018.05.143
doi: 10.1016/j.chemosphere.2018.05.143
18 张富贵,彭敏,王惠艳,等 .基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J].环境科学,2020,41(9):4197-4209. DOI:10.13227/j.hjkx.201912241
ZHANG F G , PENG M , WANG H Y , et al . Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China[J]. Environmental Science, 2020, 41(9): 4197-4209. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201912241
19 马宏宏,彭敏,刘飞,等 .广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J].环境科学,2020,41(1):449-459. DOI:10.13227/j.hjkx.201905040
MA H H , PENG M , LIU F , et al . Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201905040
20 WANG J , SU J W , LI Z G , et al . Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China[J]. Environmental Pollution, 2019, 254(Pt B): 113089. DOI:10.1016/j.envpol.2019.113089
doi: 10.1016/j.envpol.2019.113089
21 KONG X Y , LIU T , YU Z H , et al . Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China[J]. Environment Research and Public Health, 2018, 15(10): 2281. DOI:10.3390/ijerph15102281
doi: 10.3390/ijerph15102281
22 中国地质调查局 . 生态地球化学评价样品分析技术要求:DD2005—03 [S].2005. . DOI:10.3969/j.issn.1009-282X.2015.03.003
China Geological Survey . Technical Requirements for Analysis of Samples for Ecological Geochemical Evaluation: DD2005—03 [S]. 2005. (in Chinese)
doi: 10.3969/j.issn.1009-282X.2015.03.003
23 全国国土资源标准化技术委员会 . 生态地球化学评价动植物样品分析方法: [S].北京:中国标准出版社,2014. DOI:10.7498/aps.63.239201
National Technical Committee (TC93) on Land and Resources of Standardization Administration of China.Analytic Methods for Biologic Samples in Eco-geochemistry Assessment: DZ/T 0253—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
doi: 10.7498/aps.63.239201
24 MULLER G . Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
25 中国环境监测总站 .中国土壤元素背景值[M].北京:中国环境科学出版社,1990. DOI:10.15385/yb.miracle.1990
China National Environmental Monitoring Centre . Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990. (in Chinese)
doi: 10.15385/yb.miracle.1990
26 CABRERA F , CLEMENTE L , DíAZ BARRIENTOS E , et al . Heavy metal pollution of soils affected by the Guadiamar toxic flood[J]. Science of the Total Environment, 1999, 242(1/2/3): 117-129. DOI:10.1016/S0048-9697(99)00379-4
doi: 10.1016/S0048-9697(99)00379-4
27 REZAPOUR S , ATASHPAZ B , MOGHADDAM S S , et al . Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system[J]. Chemosphere, 2019, 231: 579-587. DOI:10.1016/j.chemosphere.2019.05.095
doi: 10.1016/j.chemosphere.2019.05.095
28 侯青叶,杨忠芳,余涛,等 .中国土壤地球化学参数[M].北京:地质出版社,2020:16-17. DOI:10.1002/smll.v16.17
HOU Q Y , YANG Z F , YU T , et al . Soil Geochemical Parameters in China[M]. Beijing: Geological Publishing House, 2020: 16-17. (in Chinese)
doi: 10.1002/smll.v16.17
29 国家卫生健康委员会 . 食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2017. DOI:10.3969/j.issn.1007-8134.2021.01.001
National Health Commission of the People’s Republic of China . Food Safety National Standard: Limit of Contaminants in Food: GB 2762—2017 [S]. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.3969/j.issn.1007-8134.2021.01.001
30 周国华,孙彬彬,贺灵,等 .珠江下游及浙江基本农田土地质量地球化学调查与应用示范成果报告[R].河北,廊坊:中国地质科学院地球物理地球化学勘查研究所,2019.
ZHOU G H , SUN B B , HE L , et al . Report on the Results of Geochemical Survey and Application Demonstration of Land Quality of Basic Farmland in the Lower Reaches of the Pearl River and Zhejiang[R]. Langfang, Hebei: Chinese Academy of Geological Sciences. Institute of Geophysical and Geochemical Exploration, 2019. (in Chinese)
[1] 郭泽豪,杨天燕,王莹莹,钟家伟,邓强强,孙伟艺. 我国近海不同地理群体龙头鱼耳石形态分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 380-388.
[2] 陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.
[3] 祝银,朱剑,李子孟,王姮,尤炬炬,刘琴. 厚壳贻贝中铬的形态特征及六价铬的转化规律[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 369-375.
[4] 费徐峰,任周桥,楼昭涵,肖锐,吕晓男. 基于贝叶斯最大熵和辅助信息的土壤重金属含量空间预测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 452-459.
[5] 王洁, 任锡亮, 黄芸萍, 安学君, 高天一, 孟秋峰. 春榨菜细胞质雄性不育系09-05A的形态学和细胞学特征[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 588-593.
[6] 余心杰, 吴雄飞, 沈伟良. 基于计算机视觉的岱衢族大黄鱼选育群体外形特征模式识别方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 490-498.
[7] BARSALOTE Eda Marie,田忠玲,蔡瑞杭,李晓琳,郑经武. 中国长针线虫属(线虫门:矛线目)2 新记录种记述(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 31-40.
[8] 贺水莲,吴景芝,陆燕,许春梅,吴红芝. 四倍体彩色马蹄莲的生长及对低温胁迫的生理响应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 570-578.
[9] 周慧芳,王京文,孙吉林,李丹,张奇春. 耐镉菌联合植物吸收对土壤重金属镉污染的修复[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 341-349.
[10] 朱红雪, 田忠玲, 蔡瑞杭, 李晓琳, 郑经武. 朝鲜孢囊线虫--浙江省孢囊线虫新记录种[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 81-88.
[11] 施小平, 袁森, 李新华, 邢桂培. 小檗科黄芦木和安徽小檗的叶片特征及其地理分布[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 687-693.
[12] 梅拥军,余霁雯,薛昂立,范术丽,宋美珍,庞朝友,裴文锋,喻树迅,朱军.. 棉花植株形态学性状遗传网络的关联分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 127-136.
[13] 赵海平,刘振,陈广信,李春义. 器官形态发生探索Ⅰ:生物电与形态发生[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 119-124.
[14] 赵海平,褚文辉,陈广信,李春义. 器官形态发生探索Ⅱ:独特的哺乳动物模型鹿茸[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 125-132.
[15] 武圣江1, 典瑞丽2, 韦克苏1, 李德仑1, 韩志康3, 林叶春1, 潘文杰1, 谢已书1*. 不同基因型烤烟成苗期植物学性状和生理特性差异[J]. 浙江大学学报(农业与生命科学版), 2014, 40(5): 511-518.