Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (4): 391-399    DOI: 10.3785/j.issn.1008-9209.2019.08.071
生物科学与技术     
微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测
陈婧1(),何宏燕1,2(),刘昌胜1,2
1.华东理工大学材料科学与工程学院,上海 200237
2.华东理工大学教育部医用生物材料工程研究中心,上海 200237
Bioactive modification of microfluidic chip surface for detecting recombinant human bone morphogenetic protein-2
Jing CHEN1(),Hongyan HE1,2(),Changsheng LIU1,2
1.School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
2.Medical Biomaterials Engineering Research Center of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(3802 KB)   HTML
摘要:

为了开发一种快速、特异、精准的基于大肠埃希菌表达系统制备的重组人骨形态发生蛋白-2(recombinant human bone morphogenetic protein-2, rhBMP-2)质量浓度检测方法,将酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)与微流控技术相结合,筛选合适的用于rhBMP-2的特异抗体,并基于调控抗体的特异性方向的策略,采用等离子体-蛋白A方法对高分子微流芯片的检测微流道孔进行修饰,以评价抗体蛋白在微流芯片表面的吸附效率以及最终的检测信号强度。结果表明:用等离子体处理微流道后,蛋白A和筛选的抗体成功包埋到微流芯片的检测孔表面。等离子体处理功率越高,抗体的吸附效果越好;当等离子体功率为100 W、处理时间为30 s时,第1抗体的吸附效果最好。改性后的微流孔可以有效地检测rhBMP-2质量浓度,在0~2 000 pg/mL范围内,rhBMP-2的质量浓度与荧光平均密度呈线性相关,而传统96孔ELISA法的线性区间范围是0~250 pg/mL。与传统ELISA法的试剂用量(600 μL/样品)相比,微流芯片-ELISA方法试剂用量减少约97.3%。可见,本文开发的微流芯片表面改性技术具备应用于生物医药、食品安全及环境检测的潜力。

关键词: 酶联免疫吸附测定重组人骨形态发生蛋白-2微流控检测表面改性特异性抗体    
Abstract:

In order to develop a rapid, specific, and accurate detection method for the concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2) through Escherichia coli-based expression systems, enzyme-linked immunosorbent assay (ELISA) was combined with microfluidic chip. The specific first antibody for rhBMP-2 was screened from several commercial products. Based on the regulation strategy of antibody orientation for enhancing detection signal, plasma-protein A method was then used to modify the detection microwells of the microfluidic chip. After tuning the conditions of plasma treatment on the detection microwells, adsorption efficiency of the first antibody and strength of the final detection signal were evaluated. It was found that the better capture efficiency of the first antibody could be obtained by using the higher power in the plasma treatment process. The best plasma condition was the power of 100 W and treatment time of 30 s. After the optimized modification conditions were applied for the microfluidic chip, the dilute concentrations of rhBMP-2 in a range of 0-2 000 pg/mL were achieved. In comparison with the standard assay carried out in the 96-well microtiter plate, the microwells of microfluidic chip exhibited a broader linear detection range (0-2 000 pg/mL vs. 0-250 pg/mL) and a much less reagent consumption (Each sample needed 600 μL reagent consumption in the standard assay, while about 16 μL in the microwell assay, which was 97.3% reduction in dosage). Clearly, this plasma-protein A immobilization strategy holds a great potential for polymeric microfluidic chip based assay in biomedical application, food safety, and environment monitoring.

Key words: enzyme-linked immunosorbent assay    recombinant human bone morphogenetic protein-2 (rhBMP-2)    detection on microfluidic chip    surface modification    specific antibody
收稿日期: 2019-08-07 出版日期: 2020-09-11
CLC:  R 318.08  
基金资助: 上海市国际科技合作项目(18520710100);中国科学院-威高研究发展计划攻关项目(〔2017〕005);国家重点研发计划战略性国际科技创新合作重点专项(SQ2018YF020328);上海市浦江人才计划项目(18PJ1402400);国家自然科学基金创新群体项目(51621002);国家高等学校学科创新引智基地“111计划”项目(B14018)
通讯作者: 何宏燕     E-mail: 971456416@qq.com;hyhe@ecust.edu.cn
作者简介: 陈婧(https://orcid.org/0000-0002-2974-7146),E-mail:971456416@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈婧
何宏燕
刘昌胜

引用本文:

陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.

Jing CHEN,Hongyan HE,Changsheng LIU. Bioactive modification of microfluidic chip surface for detecting recombinant human bone morphogenetic protein-2. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 391-399.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.08.071        http://www.zjujournals.com/agr/CN/Y2020/V46/I4/391

图1  高分子微流芯片表面的等离子体-蛋白A处理工艺示意图编号1~5分别表示装载样品、洗液、第2抗体、洗液和底物。
图2  瑞邦自制rhBMP-2的碱性磷酸酶(ALP)活性(A)和用不同厂家试剂盒检测的η值(B)

组别

Group

二级结构 Secondary structure

螺旋

Helix

反向平行

Reverse parallel

正向平行

Forward parallel

β-折叠

Beta-turn

无规则卷曲

Random coil

润裕抗体 Runyu antibody99.70.00.12.80.2
派普泰克抗体 PeproTech antibody21.425.512.920.145.0
欣博盛抗体 Neobioscience antibody98.90.00.07.30.1
表1  不同抗体的二级结构元件含量比较 (%)
图3  不同等离子体处理功率下微流芯片表面的接触角对比CK:未处理的表面。
图4  干燥和湿润情况下不同微流芯片表面对第1抗体的吸附效果比较处理时间30 s。CK:未处理的表面。
图5  微流芯片表面在ELISA的不同反应阶段的表面形貌比较CK:对照(未处理的表面);M1:25 W-等离子体处理;M2:25 W-第1抗吸附;M3:25 W-rhBMP-2吸附;N1:100 W-等离子体处理;N2:100 W-第1抗吸附;N3:100 W-rhBMP-2吸附。
图6  微流芯片表面在ELISA不同反应阶段的元素表征比较A. X射线光电子能谱图;B. N(1s)峰。CK:对照(未处理的表面);N1:100 W-等离子体处理;N2:100 W-第1抗吸附;N3:100 W-rhBMP-2吸附。
图7  改性微流芯片对不同质量浓度rhBMP-2的ELISA荧光显色对比
图8  改性微流芯片(A)和欣博盛96孔板(B)的rhBMP-2 ELISA标准曲线对比

试剂

Reagent

第1抗体

First antibody

rhBMP-2

第2抗体

Second antibody

HRPTMB/HPPA

终止液

Stop solution

传统酶联免疫吸附测定

Traditional ELISA

100100100100100100

微流芯片-酶联免疫吸附测定

Microfluidic chip-ELISA

222244
表2  微流芯片-ELISA与传统ELISA试剂用量对比 (µL)
1 GRGUREVIC L, CHRISTENSEN G L, SCHULZ T J, et al. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine & Growth Factor Reviews, 2016,27:105-118. DOI:10.1016/j.cytogfr.2015.12.009
doi: 10.1016/j.cytogfr.2015.12.009
2 FANG T J Z, YUAN Z Y, ZHAO Y M, et al. Synergistic effect of stem cells from human exfoliated deciduous teeth and rhBMP-2 delivered by injectable nanofibrous microspheres with different surface modifications on vascularized bone regeneration. Chemical Engineering Journal, 2019,370:573-586. DOI:10.1016/j.cej.2019.03.151
doi: 10.1016/j.cej.2019.03.151
3 YOUN Y H, LEE S J, CHOI G R, et al. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science & Engineering C, 2019,100:949-958. DOI:10.1016/j.msec.2019.03.048
doi: 10.1016/j.msec.2019
4 ZHANG J, ZHOU H J, YANG K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials, 2013,34(37):9381-9392. DOI:10.1016/j.biomaterials.2013.08.059
doi: 10.1016/j.biomaterials.2013.08.059
5 RAINA D B, QAYOOM I, LARSSON D, et al. Guided tissue engineering for healing of cancellous and cortical bone using a combination of biomaterial based scaffolding and local bone active molecule delivery. Biomaterials, 2019,188:38-49. DOI:10.1016/j.biomaterials.2018.10.004
doi: 10.1016/j.biomaterials.2018.10.004
6 WU Y, HOU J, YIN M L, et al. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds. Materials Science & Engineering C, 2014,44:326-335. DOI:10.1016/j.msec.2014.08.020
doi: 10.1016/j.msec.2014.08.020
7 ZHANG J, MA X Y, LIN D, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials, 2015,53:251-264. DOI:10.1016/j.biomaterials.2015.02.097
doi: 10.1016/j.biomaterials.2015.02.097
8 YANG F, WANG J, HOU J, et al. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials, 2013,34(5):1514-1528. DOI:10.1016/j.biomaterials.2012.10.058
doi: 10.1016/j.biomaterials.2012.10.058
9 DAI C L, GUO H, LU J X, et al. Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT. Biomaterials, 2011,32(33):8506-8517. DOI:10.1016/j.biomaterials.2011.07.090
doi: 10.1016/j.biomaterials.2011.07.090
10 CHANG N, ZHAI J Y, LIU B, et al. Low cost 3D microfluidic chips for multiplex protein detection based on photonic crystal beads. Lab on a Chip, 2018,18(23):3638-3644. DOI:10.1039/c8lc00784e
doi: 10.1039/c8lc00784e
11 YANG Y, ZENG Y. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays. Lab on a Chip, 2018,18(24):3830-3839. DOI:10.1039/c8lc00927a
doi: 10.1039/c8lc00927a
12 LI J, SKEETE Z, SHAN S Y, et al. Surface enhanced Raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Analytical Chemistry, 2015,87(21):10698-10702. DOI:10.1021/acs.analchem.5b03456
doi: 10.1021/acs.analchem.5b03456
13 LIU W, GUO Y M, ZHAO M, et al. Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker. Analytical Chemistry, 2015,87(15):7951-7957. DOI:10.1021/acs.analchem.5b01814
doi: 10.1021/acs.analchem.5b01814
14 YANG C, WANG Y, JACOBS C B, et al. O2 plasma etching and antistatic gun surface modifications for CNT yarn microelectrode improve sensitivity and antifouling properties. Analytical Chemistry, 2017,89(10):5605-5611. DOI:10.1021/acs.analchem.7b00785
doi: 10.1021/acs.analchem.7b00785
15 ONEIL C E, JACKSON J M, SHIM S H, et al. Interrogating surface functional group heterogeneity of activated thermo-plastics using super-resolution fluorescence microscopy. Analytical Chemistry, 2016,88(7):3686-3696. DOI:10.1021/acs.analchem.5b04472
doi: 10.1021/acs.analchem.5b04472
16 KRONVALL G, SEAL U S, FINSTAD J, et al. Phylogenetic insight into evolution of mammalian Fc fragment of gamma G globulin using staphylococcal protein A. Journal of Immunology, 1970,104(1):140-147.
17 WANG Z H, JIN G. Feasibility of protein A for the oriented immobilization of immunoglobulin on silicon surface for a biosensor with imaging ellipsometry. Journal of Biochemical and Biophysical Methods, 2003,57(3):203-211. DOI:10.1016/s0165-022x(03)00109-x
doi: 10.1016/s0165-022x(03)00109-x
[1] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[2] 肖海龙*, 赵凯, 林赛君, 王红青, 潘建红. 牛奶β-酪蛋白和大豆β-伴球蛋白双抗制备及夹心ELISA快速定性检测技术的建立[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 222-226.
[3] 史宗勇,史新涛,袁建琴,古少鹏,陈璋辉,郑明学. 山西舍饲羊群羊痘病毒的分离和实验室诊断[J]. 浙江大学学报(农业与生命科学版), 2011, 37(3): 275-279.
[4] 武玉香 刘志国 周志春等. 金霉素多克隆抗体的制备与鉴定[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 175-180.