Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (3): 369-376    DOI: 10.3785/j.issn.1008-9209.2021.05.132
资源利用与环境保护     
聚四氟乙烯改性掺硼金刚石电极强化降解阿特拉津
丁嘉(),李钰,官宝红()
浙江大学环境与资源学院,杭州 310058
Boron-doped diamond electrode modified by polytetrafluoroethylene to enhance the degradation of atrazine
Jia DING(),Yu LI,Baohong GUAN()
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3050 KB)   HTML
摘要:

阿特拉津(atrazine, ATZ)是使用最广泛的除草剂之一,其对地表水和地下水的污染引起了人们的担忧,相关水体净化技术的研发迫在眉睫。掺硼金刚石(boron-doped diamond, BDD)电极具有羟自由基(·OH)产率高的优点,但·OH囿于电极表面,导致有机污染物的降解受到较大的限制。本研究采用聚四氟乙烯(polytetrafluoroethylene, PTFE)改性BDD电极,用于强化水中ATZ的降解。在NaCl溶液中,BDD电极经过5.0%、8.6%、20.0% PTFE分散液改性后,ATZ降解的准一级动力学常数分别提高了98.9%、88.2%和78.6%;在NaHCO3和Na2SO4溶液中,BDD电极经8.6% PTFE分散液改性后,ATZ降解的动力学常数分别提高了49.2%和127.0%。PTFE以膜的形式附着于BDD电极表面,提高了电极电流,且黏附在电极表面的气泡有利于·OH生成并扩散到溶液本体中。BDD电极经5.0%、8.6%、20.0% PTFE改性后,溶液本体中·OH浓度分别提高了17.73倍、19.89倍和18.81倍,进而增强了对ATZ的降解速率和去除效果。PTFE改性BDD电极降解ATZ的途径主要为脱烷基、脱氯-羟基化和烷基氧化反应。

关键词: 阿特拉津掺硼金刚石电极聚四氟乙烯气泡自由基降解    
Abstract:

Atrazine (ATZ) is one of the most popular herbicides, and the pollution of atrazine to surface water and groundwater has aroused people’s concern, which is urgent to research and develop water purification technology to deal with it. Boron-doped diamond (BDD) electrode has the advantage of highly efficient production of ·OH, but the degradation of organic pollutant is seriously limited because the ·OH is trapped on the surface of the electrode. In this study, BDD electrode modified by polytetrafluoroethylene (PTFE) improved the degradation efficiency of ATZ. In NaCl solution, after modification with 5.0%, 8.6% and 20.0% PTFE dispersions, the quasi-first order kinetic constants of ATZ degradation reaction were improved by 98.9%, 88.2% and 78.6%, respectively. In NaHCO3 and Na2SO4 solutions, after modification with 8.6% PTFE dispersion, the quasi-first order kinetic constants of ATZ degradation reaction were improved by 49.2% and 127.0%. The PTFE was coated on the surface of BDD electrode in the form of film, which was beneficial to the improvement of the current. Meanwhile, the bubbles that adhered to the surface of BDD were conducive to the formation of ·OH and diffusion of ·OH into the homogeneous solution. The concentration of ·OH in the solution bulk increased by 17.73, 19.89 and 18.81 times after the modification of 5.0%, 8.6% and 20.0 % PTFEs, respectively, and the degradation efficiency of ATZ and removal effect were significantly enhanced. The main ways of ATZ degradation by PTFE modified BDD electrode were dealkylation, dechlorination-hydroxylation and alkyl oxidation reactions.

Key words: atrazine    boron-doped diamond electrode    polytetrafluoroethylene    bubble    radical    degradation
收稿日期: 2021-05-13 出版日期: 2022-07-07
CLC:  X 592  
基金资助: 国家重点研发计划项目(2019YFC0408802)
通讯作者: 官宝红     E-mail: dingjia@zju.edu.cn;guanbaohong@zju.edu.cn
作者简介: 丁嘉(https://orcid.org/0000-0002-5419-749X),E-mail:dingjia@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁嘉
李钰
官宝红

引用本文:

丁嘉,李钰,官宝红. 聚四氟乙烯改性掺硼金刚石电极强化降解阿特拉津[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 369-376.

Jia DING,Yu LI,Baohong GUAN. Boron-doped diamond electrode modified by polytetrafluoroethylene to enhance the degradation of atrazine. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 369-376.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.05.132        https://www.zjujournals.com/agr/CN/Y2022/V48/I3/369

图1  PTFE改性前后BDD电极的扫描电镜图A. 未改性BDD电极;B. 5.0% PTFE改性BDD电极;C. 8.6% PTFE改性BDD电极;D. 20.0% PTFE改性BDD电极。图5同。
图2  PTFE改性BDD电极对NaCl溶液中ATZ降解的影响A. ATZ降解速率(v)(右下方小图为ATZ降解的准一级反应动力学分析,其中c0为ATZ初始浓度,c为该时刻的ATZ浓度);B. ATZ降解的准一级反应动力学常数。图3和图6同。
图3  PTFE改性BDD电极对Na2SO4 和NaHCO3 溶液中ATZ降解的影响
图4  PTFE改性前后BDD电极的线性扫描伏安曲线
图5  PTFE改性前后BDD电极的气泡黏附现象
图6  甲醇(猝灭剂)对PTFE改性BDD电极降解ATZ的影响
图7  8.6% PTFE改性BDD电极的激光共聚焦显微镜图像及荧光强度A. 开路电压(Z=0 μm,Z为显微镜镜头与电极表面的距离);B. 开路电压(Z=50 μm);C. 施加电压为3 V(Z=0 μm);D. 施加电压为3 V(Z=50 μm);E. 施加电压为3 V时沿箭头方向的荧光强度。
图8  PTFE改性BDD电极降解ATZ的路径
质荷比m/z

缩写

Abbreviation

分子式

Molecular formula

名称

Name

216ATZC8H14N5Cl2-氯-4-乙胺基-6-异丙基胺基-1, 3, 5-三嗪
230CAITC6H10N5Cl2-氯-4-氨基-6-异丙基胺基-1, 3, 5-三嗪
174CEATC5H8N5Cl2-氯-4-乙胺基-6-氨基-1, 3, 5-三嗪
198HEITC8H15N52-羟基-4-乙胺基-6-异丙基胺基-1, 3, 5-三嗪
188CAATC3H4N5Cl2-氯-4, 6-二氨基-1, 3, 5-三嗪
212HDATC7H9N5O32-羟基-4, 6-乙酰胺基-1, 3, 5-三嗪
212HAITMC8H13O2N52-羟基-4-乙酰胺基-6-异丙基胺基-1, 3, 5-三嗪
198HAETC7H11O2N52-羟基-4-乙胺基-6-乙酰胺基-1, 3, 5-三嗪
表1  PTFE改性BDD电极降解ATZ的中间产物
1 刘威.阿特拉津对地表饮用水源水质影响评价及毒理研究[D].长春:东北师范大学,2015.
LIU W. The atrazine impact assessment on water quality of surface drinking water sources and its toxicology research[D]. Changchun: Northeast Normal University, 2015. (in Chinese with English abstract)
2 KOLPIN D W, BARBASH J E. Occurrence of pesticides in shallow groundwater of the United States: initial results from the national water-quality assessment program[J]. Environmental Science and Technology, 1998, 32(5):558-566. DOI:10.1021/es970412g
doi: 10.1021/es970412g
3 DE LA CASA-RESINO I, VALDEHITA A, SOLER F, et al. Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix coturnix)[J]. Comparative Biochemistry and Physiology: Part C, 2012, 156(3/4):159-165. DOI:10.1016/j.cbpc.2012.07.006
doi: 10.1016/j.cbpc.2012.07.006
4 WANG L, LU J H, LI L, et al. Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti4O7 and boron doped diamond anodes[J]. Water Research, 2020, 170: 115254. DOI:10.1016/j.watres.2019. 115254
doi: 10.1016/j.watres.2019. 115254
5 WANG J L, XU L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251-325. DOI:‍10.1080/10643389. 2010.507698
doi: ?10.1080/10643389. 2010.507698
6 BRILLAS E, SIRÉS I, OTURAN M A. Electro-fenton process and related electrochemical technologies based on fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. DOI:10.1021/cr900136g
doi: 10.1021/cr900136g
7 MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. DOI:10.1021/acs.chemrev.5b00361
doi: 10.1021/acs.chemrev.5b00361
8 YANG N J, YU S Y, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204. DOI:10.1039/c7cs00757d
doi: 10.1039/c7cs00757d
9 CHAPLIN B P. The prospect of electrochemical technologies advancing worldwide water treatment[J]. Accounts of Chemical Research, 2019, 52(3): 596-604. DOI:10.1021/acs.accounts.8b00611
doi: 10.1021/acs.accounts.8b00611
10 DEWIL R, MANTZAVINOS D, POULIOS I, et al. New perspectives for advanced oxidation processes[J]. Journal of Environmental Management, 2017, 195: 93-99. DOI:10.1016/ j.jenvman.2017.04.010
doi: 10.1016/ j.jenvman.2017.04.010
11 XIA C, BACK S, RINGE S, et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide[J]. Nature Catalysis, 2020, 3(2): 125-134. DOI:10. 1038/s41929-019-0402-8
doi: 10. 1038/s41929-019-0402-8
12 BARAZESH J M, PRASSE C, SEDLAK D L. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions[J]. Environmental Science & Technology, 2016, 50(18): 10143-10152. DOI:10.1021/acs.est.6b02232
doi: 10.1021/acs.est.6b02232
13 中华人民共和国卫生部. 生活饮用水标准检验方法 总则: [S].北京:中国标准出版社,2007. DOI:10.3969/j.issn.1674-7372.2013.03.020
Ministry of Health of the People’s Republic of China. Standard Examination Methods for Drinking Water:General Principles: [S]. Beijing: Standards Press of China, 2007.
doi: 10.3969/j.issn.1674-7372.2013.03.020
14 中华人民共和国环境保护部. 杂环类农药工业水污染物排放标准: [S]. 北京:中国环境科学出版社,2008. DOI:10.3969/j.issn.1006-5377.2015.01.001
Ministry of Environmental Protection of the People’s Republic of China. Effluent Standards of Pollutants for Heterocyclic Pesticides Industry: GB 21523—2008 [S]. Beijing: China Evironmental Science Press, 2008.
doi: 10.3969/j.issn.1006-5377.2015.01.001
15 SONG H R, YAN L X, JIANG J, et al. Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation[J]. Water Research, 2018, 128: 393-401. DOI:10.1016/j.watres.2017.10.018
doi: 10.1016/j.watres.2017.10.018
16 URTIAGA A, FERNÁNDEZ-GONZÁLEZ C, GÓMEZ-LAVÍN S, et al. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes[J]. Chemosphere, 2015, 129: 20-26. DOI:10.1016/j.chemosphere.2014.05.090
doi: 10.1016/j.chemosphere.2014.05.090
17 BRILLAS E, MARTÍNEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: an updated review[J]. Applied Catalysis B: Environmental, 2015, 166/167: 603-643. DOI:10.1016/j.apcatb.2014.11.016
doi: 10.1016/j.apcatb.2014.11.016
18 GLIGOROVSKI S, STREKOWSKI R, BARBATI S, et al. Environmental implications of hydroxyl radicals (·OH)[J]. Chemical Reviews, 2015, 115(24): 13051-13092. DOI:10.1021/cr500310b
doi: 10.1021/cr500310b
19 国家环境保护总局科技标准司. 地表水环境质量标准: [S]. 北京:中国环境科学出版社,2002. DOI:10.21236/ada402742
Science and Technology Department of the State Environmental Protection General Administration. Environmental Quality Standards for Surface Water: GB 3838—2002 [S]. Beijing: China Environmental Science Press, 2002.
doi: 10.21236/ada402742
20 KATHMANN S M, KUO I W, MUNDY C J. Electronic effects on the surface potential at the vapor-liquid interface of water[J]. Journal of the American Chemical Society, 2008, 130(49): 16556-16561. DOI:10.1021/ja802851w
doi: 10.1021/ja802851w
21 VOGEL Y B, EVANS C W, BELOTTI M, et al. The corona of a surface bubble promotes electrochemical reactions[J]. Nature Communications, 2020, 11(1): 6323. DOI:‍10.1038/s41467-020-20186-0
doi: ?10.1038/s41467-020-20186-0
22 SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782-5816. DOI:10.1021/cr300367d
doi: 10.1021/cr300367d
23 SOUZA F L, SÁEZ C, CAÑIZARES P, et al. Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation[J]. Applied Catalysis B: Environmental, 2014, 144(7): 121-128. DOI:10.1016/j.apcatb.2013.07.003
doi: 10.1016/j.apcatb.2013.07.003
24 DING X, WANG S Y, SHEN W Q, et al. Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism[J]. Water Research, 2017, 112: 9-18. DOI:10.1016/j.watres.2017.01.024
doi: 10.1016/j.watres.2017.01.024
[1] 屠璇,张硕,刘振,闫克平. 流化床式低温等离子体降解土壤中六氯苯的实验研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 351-358.
[2] Jane MAKONI, Antony MAODZEKA, Devwattie DASS. 新型可降解液膜覆盖对土壤温度、棉花种子萌发和幼苗生长的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 699-707.
[3] 李泳欣, 邹艺轩, 刘建新, 刘红云. 奶牛氧化应激及天然植物抗氧化提取物研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 549-554.
[4] 谷成刚,相雷雷,任文杰,吴为,刘畅,方国东,王芳. 土壤中酞酸酯多界面迁移转化与效应研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 700-712.
[5] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[6] 孙扬,徐会娟,李晓晶,李永涛,赵丽霞. 二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 727-733.
[7] 王慧,胡金星,秦智慧,徐新华,沈超峰. 细菌对有机污染物的趋化性及其对降解的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 676-684.
[8] 李刚,都林娜,许方程,王阳,泮琇. 肠杆菌CV-b脱色孔雀石绿的特性及机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 493-501.
[9] 王丽丽, 国巍, 付春娜, 燕红. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664.
[10] 王青松,柳永,王新,孙宏,姚晓红,吴逸飞,汤江武,葛向阳. 基于质构量化分析的净水菌胶囊制备及其性能研究[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 712-722.
[11] 胡宏亮,韩之刚,张国平. 生物降解地膜对玉米的生物学效应及其降解特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 179-188.
[12] 冯琢, 王晟, 白娜玲, 赵宇华. 二苯醚降解菌鞘氨醇单胞菌DZ-3的分离及其降解特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 1-6.
[13] 孙潇, 包劲松*. 葡聚糖水合二激酶的生物学功能及其应用[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 591-597.
[14] 陆宗超, 李振兴*, 张立敏, 林洪. 大菱鲆过敏原氧化后理化性质及与IgE结合能力的变化[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 679-686.
[15] 徐丽丽1, 赵芝清1,2, 沈晓莉2, 方苗苗2, 竺立3, 傅柳松1. F对厌氧颗粒污泥的产甲烷毒性及降解性能的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 741-746.