Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (3): 351-358    DOI: 10.3785/j.issn.1008-9209.2021.04.211
资源利用与环境保护     
流化床式低温等离子体降解土壤中六氯苯的实验研究
屠璇(),张硕,刘振(),闫克平
浙江大学化学工程与生物工程学院工业生态与环境研究所,杭州 310027
Study on the degradation of hexachlorobenzene in contaminated soil by fluidized-bed non-thermal plasma
Xuan TU(),Shuo ZHANG,Zhen LIU(),Keping YAN
Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2069 KB)   HTML
摘要:

针对土壤中难降解的六氯苯,开展了流化床式介质阻挡放电反应器对其降解特性的实验研究。结果表明:介质阻挡放电过程中产生了20 μs脉宽的脉冲电流。空气流速为4.0 L/min时,土壤达到充分流化状态。增加放电电压会提高反应器的能量密度,有利于六氯苯的降解,但发热会导致能量利用率降低。当放电电压增至16 kV、能量密度为172.5 J/L、放电32 min时,六氯苯降解率达到97.3%。相较于酸性土壤,中性或碱性土壤对六氯苯的降解更有利。提高土壤中六氯苯的初始含量会使其降解率降低,但绝对去除量增加。六氯苯的降解符合一级动力学方程,放电过程中C—Cl键受到活性物质攻击而断裂,生成了低取代氯苯和小分子有机酸等副产物,表明土壤中六氯苯的降解过程以脱氯为主。该结果对实现高效修复实际污染土壤具有重要的现实意义。

关键词: 六氯苯介质阻挡放电脉冲放电降解    
Abstract:

To study the degradation of hexachlorobenzene (HCB) in contaminated soil by dielectric barrier discharge (DBD), a fluidized-bed DBD reactor was used to degrade HCB in contaminated soil. The results showed that a discharge current pulse could be generated with a 20 μs pulse width. When the air flow rate was 4.0 L/min, the soil reached a fully fluidized state. The energy density of reactor increased with the increase of discharge voltage, which promoted HCB degradation, but increasing heating led to lower energy utilization. The HCB degradation rate reached 97.3% after 32 min while the energy density was 172.5 J/L at a discharge voltage of 16 kV. The neutral or alkaline condition was more beneficial to HCB degradation than the acidic condition. With the increase in the initial HCB concentration, the degradation rate of HCB decreased, but the absolute degradation amount increased. The degradation of HCB conformed to first-order kinetic equation. During the discharge process, the C—Cl bond was attacked by active substances, and low-substituted chlorobenzene and small molecular organic acids and other byproducts were generated, which indicated that the degradation of HCB in contaminated soil was mainly a dechlorination process. The research results have important practical significance for the remediation of actual contaminated soil.

Key words: hexachlorobenzene    dielectric barrier discharge    pulsed discharge    degradation
收稿日期: 2021-04-21 出版日期: 2022-07-07
CLC:  X 53  
基金资助: 国家重点研发计划项目(2019YFC1805604)
通讯作者: 刘振     E-mail: 21828019@zju.edu.cn;zliu@zju.edu.cn
作者简介: 屠璇(https://orcid.org/0000-0002-3410-6394),E-mail:21828019@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
屠璇
张硕
刘振
闫克平

引用本文:

屠璇,张硕,刘振,闫克平. 流化床式低温等离子体降解土壤中六氯苯的实验研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 351-358.

Xuan TU,Shuo ZHANG,Zhen LIU,Keping YAN. Study on the degradation of hexachlorobenzene in contaminated soil by fluidized-bed non-thermal plasma. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 351-358.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.04.211        https://www.zjujournals.com/agr/CN/Y2022/V48/I3/351

图1  DBD实验系统示意1:空气;2:质量流量计;3:气体进口;4:流化床式反应器;5:气体出口;6:流量显示仪;7:双极性微秒脉冲电源;8:变压器;9:电流探头;10:差分探头;11:高压探头;12:示波器。
图2  流化床式反应器结构示意1:高压电极;2:气体进口;3:低压电极;4:带孔定心板;5:绝缘介质;6:气体出口。
图3  典型负载电压电流波形
图4  反应器在16 kV时的放电照片
图5  不同空气流速下六氯苯的降解率
图 6  不同放电电压下六氯苯的降解率
图 7  不同土壤pH条件下六氯苯的降解率
图 8  不同HCB初始含量下六氯苯的降解率

放电电压

Discharge voltage/kV

空气流速Air flow rate/(L/min)w (HCB)/(mg/kg)P/Wt50/minG50/(g/(kW?h))
134.01001.6717.60.51
144.01001.9911.60.65
154.01003.039.70.51
164.010011.503.10.42
164.020011.508.00.16
164.040011.5016.80.08
表 1  不同放电条件下的G50值
图 9  不同HCB初始含量下六氯苯的降解动力学
w (HCB)/(mg/kg)

动力学拟合方程

Kinetic fitting equation

k/min-1

回归系数(R2

Coefficient of regression (R2)

100y=-0.109 04x-0.275 050.109 040.980 7
200y=-0.041 60x-0.283 270.041 600.914 7
400y=-0.038 31x-0.028 750.038 310.997 6
表2  不同HCB初始含量下六氯苯降解动力学拟合方程和参数
图10  不同处理时间六氯苯的气相色谱图
1 SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China: a critical review[J]. Science of the Total Environment, 2018, 615: 724-740. DOI:10.1016/j.scitotenv.2017.09.271
doi: 10.1016/j.scitotenv.2017.09.271
2 储金宇,戈照轶,王慧娟,等.脉冲放电等离子体/黏土矿物联合修复芘污染土壤[J].高电压技术,2016,42(2):354-360. DOI:10.13336/j.1003-6520.hve.2016.02.003
CHU J Y, GE Z Y, WANG H J, et al. Remediation of pyrene polluted soil in a system combined with pulse discharge plasma and clay[J]. High Voltage Engineering, 2016, 42(2):354-360. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2016.02.003
3 李国刚,李红莉.持久性有机污染物在中国的环境监测现状[J].中国环境监测,2004,20(4):53-60. DOI:10.3969/j.issn.1002-6002.2004.04.018
LI G G, LI H L. The present status of persistent organic pollutants (POPs) environmental monitoring in China[J]. Environmental Monitoring in China, 2004, 20(4): 53-60. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6002.2004.04.018
4 AHMADI S, GITIPOUR S, MARZANI S, et al. Microsilica-cement stabilization of organic contaminated soil: leaching behaviour of polycyclic aromatic hydrocarbons[J]. Current World Environment, 2016, 11(1): 20-27. DOI:‍10.12944/CWE.11.1.03
doi: ?10.12944/CWE.11.1.03
5 BAILEY R E. Global hexachlorobenzene emissions[J]. Chemosphere, 2001, 43(2): 167-182. DOI:‍10.1016/S0045-6535(00)00186-7
doi: ?10.1016/S0045-6535(00)00186-7
6 BALÁZS H E, SCHMID C A O, PODAR D, et al. Development of microbial communities in organochlorine pesticide contaminated soil: a post-reclamation perspective[J]. Applied Soil Ecology, 2019, 150: 103467. DOI:10.1016/j.apsoil.2019.103467
doi: 10.1016/j.apsoil.2019.103467
7 王慧娟,郭贺,赵文信,等.脉冲放电等离子体修复芘污染土壤的影响因素[J].高电压技术,2015,41(10):3512-3517. DOI:10.13336/j.1003-6520.hve.2015.10.045
WANG H J, GUO H, ZHAO W X, et al. Influential factors for pyrene degradation in a pulsed discharge plasma system for polluted soil remediation[J]. High Voltage Engineering, 2015, 41(10): 3512-3517. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2015.10.045
8 ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. DOI:10.1016/j.chemosphere.2019.01.079
doi: 10.1016/j.chemosphere.2019.01.079
9 YAO Z T, LI J H, XIE H H, et al. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012, 16: 722-729. DOI:10.1016/j.proenv.2012.10.099
doi: 10.1016/j.proenv.2012.10.099
10 PANT P, PANT S. A review: advances in microbial remediation of trichloroethylene (TCE)[J]. Journal of Environmental Sciences, 2010, 22(1): 116-126. DOI:10.1016/ S1001-0742(09)60082-6
doi: 10.1016/
11 ZHANG H, MA D Y, QIU R L, et al. Non-thermal plasma technology for organic contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2017, 313: 157-170. DOI:10.1016/j.cej.2016.12.067
doi: 10.1016/j.cej.2016.12.067
12 MEINERS A, LECK M, ABEL B. Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization[J]. Review of Scientific Instruments, 2010, 81(11): 113507. DOI:10.1063/1.3501963
doi: 10.1063/1.3501963
13 ZHANG Y Z, XIONG X Y, HAN Y, et al. Application of titanium dioxide-loaded activated carbon fiber in a pulsed discharge reactor for degradation of methyl orange[J]. Chemical Engineering Journal, 2010, 162(3): 1045-1049. DOI:10.1016/j.cej.2010.07.017
doi: 10.1016/j.cej.2010.07.017
14 闫克平,李树然,冯卫强,等.高电压环境工程应用研究关键技术问题分析及展望[J].高电压技术,2015,41(8):2528-2544. DOI:10.13336/j.1003-6520.hve.2015.08.006
YAN K P, LI S R, FENG W Q, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2015.08.006
15 LOCKE B R, SATO M, SUNKA P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Industrial & Engineering Chemistry Research, 2006, 45(3): 882-905. DOI:10.1021/ie050981u
doi: 10.1021/ie050981u
16 邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-705. DOI:10.13336/j.1003-6520.hve.20160308018
SHAO T, ZHANG C, WANG R X, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.20160308018
17 董冰岩,聂亚林,宿雅威,等.双极性高压脉冲介质阻挡放电降解甲醛及臭氧生成质量浓度控制[J].高电压技术,2016,42(5):‍1373-1378. DOI:10.13336/j.‍1003-6520.hve.20160412001
DONG B Y, NIE Y L, SU Y W, et al. Formaldehyde degradation and ozone generating mass concentration control in bipolar high voltage pulse dielectric barrier discharge[J]. High Voltage Engineering, 2016, 42(5): 1373-1378. (in Chinese with English abstract)
doi: 10.13336/j.?1003-6520.hve.20160412001
18 WANG T C, REN J Y, QU G Z, et al. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation[J]. Journal of Hazardous Materials, 2016, 320: 539-546. DOI:10.1016/j.jhazmat.2016.08.067
doi: 10.1016/j.jhazmat.2016.08.067
19 牟睿文.介质阻挡放电与脉冲电晕放电等离子体修复多环芳烃污染土壤的研究[D].上海:东华大学,2016.
MOU R W. Remediation of PAHs contaminated soil by dielectric barrier discharge plasma and pulse corona discharge plasma[D]. Shanghai: Donghua University, 2016. (in Chinese with English abstract)
20 中华人民共和国环境保护部. 土壤和沉积物 有机物的提取 超声波萃取法: [S].北京:中国环境科学出版社,2017. DOI:10.3969/j.issn.1006-5377.2015.01.001
Ministry of Environmental Protection of the People’s Republic of China. Soil and Sediment:Extraction of Organic Compounds:Ultrasonic Extraction : [S]. Beijing: China Environmental Science Press, 2017. (in Chinese)
doi: 10.3969/j.issn.1006-5377.2015.01.001
21 TANG Q, LIN S, JIANG W J, et al. Gas phase dielectric barrier discharge induced reactive species degradation of 2,4-dinitrophenol[J]. Chemical Engineering Journal, 2009, 153(1/2/3): 94-100. DOI:10.1016/j.cej.2009.06.022
doi: 10.1016/j.cej.2009.06.022
22 ZHANG R B, ZHANG C, CHENG X X, et al. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor[J]. Journal of Hazardous Materials, 2007, 142(1/2): 105-110. DOI:10.1016/j.jhazmat.2006.07.071
doi: 10.1016/j.jhazmat.2006.07.071
23 SANG C F, SUN J Z, WANG D Z. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation[J]. Journal of Physics D: Applied Physics, 2010, 43(4): 045202. DOI:10.1088/0022-3727/43/4/045202
doi: 10.1088/0022-3727/43/4/045202
24 PEYROUS R. The effect of relative humidity on ozone production by corona discharge in oxygen or air-a numerical simulation-part I : oxygen[J]. Ozone Science & Engineering, 1990, 12(1): 19-40. DOI:10.1080/01919519008552453
doi: 10.1080/01919519008552453
25 WANG H J, ZHOU G S, GUO H, et al. Organic compounds removal in soil in a seven-needle-to-net pulsed discharge plasma system[J]. Journal of Electrostatics, 2016, 80: 69-75. DOI:10.1016/j.elstat.2016.02.002
doi: 10.1016/j.elstat.2016.02.002
26 JIANG N, LU N, SHANG K F, et al. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation[J]. Journal of Hazardous Materials, 2013, 262: 387-393. DOI:10.1016/j.jhazmat.2013.08.072
doi: 10.1016/j.jhazmat.2013.08.072
27 AGGELOPOULOS C A, TSAKIROGLOU C D, OGNIER S, et al. Non-aqueous phase liquid-contaminated soil remediation by ex situ dielectric barrier discharge plasma[J]. International Journal of Environmental Science & Technology, 2015, 12(3): 1011-1020. DOI:10.1007/s13762-013-0489-4
doi: 10.1007/s13762-013-0489-4
28 吉冰静,高兴保,黄启飞,等.金属氧化物降解六氯苯的活性比较及催化机理研究[J].环境科学学报,2017,37(7):2616-2622. DOI:10.13671/j.hjkxxb.2016.0470
JI B J, GAO X B, HUANG Q F, et al. Investigation of the degradation activity and mechanism of hexachlorobenzene on metal oxide[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2616-2622. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2016.0470
[1] 丁嘉,李钰,官宝红. 聚四氟乙烯改性掺硼金刚石电极强化降解阿特拉津[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 369-376.
[2] Jane MAKONI, Antony MAODZEKA, Devwattie DASS. 新型可降解液膜覆盖对土壤温度、棉花种子萌发和幼苗生长的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 699-707.
[3] 谷成刚,相雷雷,任文杰,吴为,刘畅,方国东,王芳. 土壤中酞酸酯多界面迁移转化与效应研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 700-712.
[4] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[5] 孙扬,徐会娟,李晓晶,李永涛,赵丽霞. 二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 727-733.
[6] 王慧,胡金星,秦智慧,徐新华,沈超峰. 细菌对有机污染物的趋化性及其对降解的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 676-684.
[7] 李刚,都林娜,许方程,王阳,泮琇. 肠杆菌CV-b脱色孔雀石绿的特性及机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 493-501.
[8] 王丽丽, 国巍, 付春娜, 燕红. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664.
[9] 王青松,柳永,王新,孙宏,姚晓红,吴逸飞,汤江武,葛向阳. 基于质构量化分析的净水菌胶囊制备及其性能研究[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 712-722.
[10] 胡宏亮,韩之刚,张国平. 生物降解地膜对玉米的生物学效应及其降解特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 179-188.
[11] 冯琢, 王晟, 白娜玲, 赵宇华. 二苯醚降解菌鞘氨醇单胞菌DZ-3的分离及其降解特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 1-6.
[12] 孙潇, 包劲松*. 葡聚糖水合二激酶的生物学功能及其应用[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 591-597.
[13] 徐丽丽1, 赵芝清1,2, 沈晓莉2, 方苗苗2, 竺立3, 傅柳松1. F对厌氧颗粒污泥的产甲烷毒性及降解性能的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 741-746.
[14] 章明奎, 顾国平, 王阳. 生物质炭在土壤中的降解特征[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 329-335.
[15] 赖亿玉,黎飞,徐幼平,蔡新忠. 泛素融合降解蛋白基因UFD1对植物抗病和抗逆性的调控功能分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 21-27.