Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (3): 377-382    DOI: 10.3785/j.issn.1008-9209.2021.06.211
动物科学与动物医学     
铁饱和度对乳铁蛋白抑菌活性的影响
王振杰(),张康,梁莉,熊晴晴,杜华华()
浙江大学饲料科学研究所,浙江省饲料与动物营养重点实验室,杭州 310058
Effects of iron saturation on antibacterial activity of lactoferrin
Zhenjie WANG(),Kang ZHANG,Li LIANG,Qingqing XIONG,Huahua DU()
Key Laboratory of Feed and Animal Nutrition of Zhejiang Province, Institute of Feed Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2958 KB)   HTML
摘要:

本试验通过制备不同铁饱和度的猪乳铁蛋白(lactoferrin, Lf),探讨其对细菌生长的影响。根据铁饱和度将试验分为3组,对照组(不添加任何Lf)、铁不饱和乳铁蛋白处理组(Apo-Lf,铁饱和度为6.9%)和铁饱和乳铁蛋白处理组(Holo-Lf,铁饱和度为100.0%),分别处理大肠埃希菌K88、金黄色葡萄球菌和鼠伤寒沙门菌。结果表明:1)天然Lf和Apo-Lf能显著抑制大肠埃希菌K88和金黄色葡萄球菌的生长,而Holo-Lf没有表现出抑菌活性。2)补铁可以消除Apo-Lf对大肠埃希菌K88的抑制作用,说明Apo-Lf是通过螯合铁发挥抑菌功能的。3)扫描电镜观察结果显示,Apo-Lf破坏了大肠埃希菌K88和金黄色葡萄球菌的细菌膜结构,但Holo-Lf对所有被测细菌都没有影响。4)三维结构预测结果提示,Apo-pLf和Holo-pLf的三维结构开放程度明显不同,Apo-pLf的活性位点可能更容易与细菌直接作用。综上所述,猪乳铁蛋白的抑菌活性依赖于其铁饱和度,Apo-Lf既可以通过螯合铁的方式抑制细菌生长,也可以通过破坏细菌膜结构方式抑制大肠埃希菌K88和金黄色葡萄球菌的生长。

关键词: 乳铁蛋白抑菌铁饱和度铁不饱和乳铁蛋白铁饱和乳铁蛋白    
Abstract:

The purpose of this study was to elucidate how iron-depleted and iron-saturated forms of lactoferrin (Lf) exert its antibacterial activity in vitro. Bacteria were divided into three groups by treated with different forms of porcine Lf: the control group (without addition of Lf), apolactoferrin (Apo-Lf, iron saturation is 6.9%) group and hololactoferrin (Holo-Lf, iron saturation is 100.0%) group. The results showed that: 1) Native Lf and Apo-Lf significantly inhibited the growth of Escherichia coli K88 and Staphylococcus aureus (P<0.01), which was not observed in Holo-Lf group. 2) Apo-Lf exerted antibacterial effect by chelating iron, and iron supplementation could eliminate the inhibitory effect of Apo-Lf on E. coli K88. 3) Scanning electron microscope (SEM) results revealed that Apo-Lf damaged the surface membranes of E. coli K88 and S. Aureus. However, Holo-Lf showed no effect on all of tested bacteria. 4) Predicted three-dimensional structures showed that the structures of Apo-Lf and Holo-Lf were markedly different, and the active site of Apo-Lf was more likely to directly interact with bacteria. Taken together, Apo-Lf inhibited the growth of E. coli K88 and S. Aureus by chelating iron or destroying the surface of bacteria.

Key words: lactoferrin    antibacterial    iron saturation    apolactoferrin    hololactoferrin
收稿日期: 2021-06-21 出版日期: 2022-07-07
CLC:  S 816.7  
基金资助: 浙江省自然科学基金项目(LZ20C170004);国家自然科学基金项目(31872363)
通讯作者: 杜华华     E-mail: 1035043032@qq.com;huahuadu@zju.edu.cn
作者简介: 王振杰(https://orcid.org/0000-0003-1718-5649),E-mail:1035043032@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王振杰
张康
梁莉
熊晴晴
杜华华

引用本文:

王振杰,张康,梁莉,熊晴晴,杜华华. 铁饱和度对乳铁蛋白抑菌活性的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 377-382.

Zhenjie WANG,Kang ZHANG,Li LIANG,Qingqing XIONG,Huahua DU. Effects of iron saturation on antibacterial activity of lactoferrin. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 377-382.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.06.211        https://www.zjujournals.com/agr/CN/Y2022/V48/I3/377

图1  不同浓度乳铁蛋白对大肠埃希菌K88生长的影响**表示在P<0.01水平差异有高度统计学意义。
图2  Apo-Lf和Holo-Lf对细菌生长的影响
图3  补铁对Lf处理的大肠埃希菌K88生长的影响
图4  培养基中的铁对细菌生长的影响
图5  50.0 µg/mL Apo-Lf和50.0 µg/mL Holo-Lf对细菌形态的影响红色箭头表示细菌受损,形态破损。
图6  Apo-Lf和Holo-Lf的三维结构预测红色箭头表示铁结合部位。
1 LEE S H, SHINDE P, CHOI J Y, et al. Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs[J]. Biological Trace Element Research, 2008, 126(): 57-68. DOI:10.1007/s12011-008-8209-5
doi: 10.1007/s12011-008-8209-5
2 PHILPOTT C C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery[J]. Journal of Biological Chemistry, 2012, 287(17): 13518-13523. DOI:10.1074/jbc.R111.326876
doi: 10.1074/jbc.R111.326876
3 NICOLS G, CHAUVET C, VIATTE L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation[J]. The Journal of Clinical Investigation, 2002, 110(7): 1037-1044. DOI:10.1172/ JCI15686
doi: 10.1172/
4 WEINBERG E D. Iron loading and disease surveillance[J]. Emerging Infectious Diseases, 1999, 5(3): 346-352. DOI:10.3201/eid0503.990305
doi: 10.3201/eid0503.990305
5 LIANG L, WANG Z J, YE G, et al. Distribution of lactoferrin is related with dynamics of neutrophils in bacterial infected mice intestine[J]. Molecules, 2020, 25(7): 1496. DOI:10.3390/molecules25071496
doi: 10.3390/molecules25071496
6 ALEXANDER D B, IIGO M, YAMAUCHI K, et al. Lactoferrin: an alternative view of its role in human biological fluids[J]. Biochemistry and Cell Biology, 2012, 90(3): 279-306. DOI:10.1139/o2012-013
doi: 10.1139/o2012-013
7 KUHARA T, YAMAUCHI K, TAMURA Y, et al. Oral administration of lactoferrin increaseds NK cell activity in mice via increased production of IL-18 and type Ⅰ IFN in the small intestine[J]. Journal of Interferon & Cytokine Research, 2006, 26(7): 489-499. DOI:10.1089/jir.2006.26.489
doi: 10.1089/jir.2006.26.489
8 MORENO-EXPÓSITO L, ILLESCAS-MONTES R, MELGUIZO-RODRÍGUEZ L, et al. Multifunctional capacity and therapeutic potential of lactoferrin[J]. Life Sciences, 2018, 195: 61-64. DOI:10.1016/j.lfs.2018.01.002
doi: 10.1016/j.lfs.2018.01.002
9 FARNAUD S, EVANS R W. Lactoferrin—a multifunctional protein with antimicrobial properties[J]. Molecular Immunology, 2003, 40(7): 395-405. DOI:‍10.1016/S0161-5890(03)00152-4
doi: ?10.1016/S0161-5890(03)00152-4
10 HAN F F, GAO Y H, LUAN C, et al. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides[J]. Journal of Dairy Science, 2013, 96(6): 3471-3487. DOI:10.3168/jds.2012-6104
doi: 10.3168/jds.2012-6104
11 WANG X Y, GUO H Y, ZHANG W, et al. Effect of iron saturation level of lactoferrin on osteogenic activity in vitro and in vivo [J]. Journal of Dairy Science, 2013, 96(1): 33-39. DOI:10.3168/jds.2012-5692
doi: 10.3168/jds.2012-5692
12 TIAN H, MADDOX I S, FERGUSON L R, et al. Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens[J]. Biometals, 2010, 23(3): 593-596. DOI:10.1007/s10534-010-9318-0
doi: 10.1007/s10534-010-9318-0
13 DIONYSIUS D A, GRIEVE P A, MILNE J M. Forms of lactoferrin: their antibacterial effect onenterotoxigenic Escherichia coli [J]. Journal of Dairy Science, 1993, 76(9): 2597-2606. DOI:10.3168/jds.s0022-0302(93)77594-3
doi: 10.3168/jds.s0022-0302(93)77594-3
14 VISCA P, BERLUTTI F, VITTORIOSO P, et al. Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin[J]. Medical Microbiology and Immunology, 1989, 178(2): 69-79. DOI:10.1007/bf00203302
doi: 10.1007/bf00203302
15 LEWIS L A, ROHDE K, GIPSON M, et al. Identification and molecular analysis of lbpBA, which encodes the two-component meningococcal lactoferrin receptor[J]. Infection and Immunity, 1998, 66(6): 3017-3023. DOI:10.1128/iai.66.6.3017-3023.1998
doi: 10.1128/iai.66.6.3017-3023.1998
16 BHIMANI R S, VENDROV Y, FURMANSKI P. Influence of lactoferrin feeding and injection against systemic staphylococcal infection in mice[J]. Journal of Applied Microbiology, 1999, 86(1): 135-144. DOI:10.1046/j.1365-2672.1999.00644.x
doi: 10.1046/j.1365-2672.1999.00644.x
17 BRANDENBURG K, JÜRGENS G, MÜLLER M, et al. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin[J]. Biological Chemistry, 2001, 382(8): 1215-1225. DOI:10.1515/BC.2001.152
doi: 10.1515/BC.2001.152
18 QIU J Z, HENDRIXSON D R, BAKER E N, et al. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenza [J]. PNAS, 1998, 95: 12641-12646. DOI:10.1073/pnas.95.21.12641
doi: 10.1073/pnas.95.21.12641
19 HENDRIXSON D R, QIU J, SHEWRY S C, et al. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites[J]. Molecular Microbiology, 2003, 47(3): 607-617. DOI:10.1046/j.1365-2958.2003.03327.x
doi: 10.1046/j.1365-2958.2003.03327.x
[1] 陈海念,冯蓉,杨胜竹,曹本福,文明江,刘丽,陆引罡. 1株生防菌的鉴定及其发酵条件优化[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 177-188.
[2] 水燕,管政兵,叶俊贤,史永红,刘国锋,徐增洪. 克氏原螯虾i-型溶菌酶在巴斯德毕赤酵母中的高效胞外表达及其抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 526-532.
[3] 卢海燕, 徐重新, 张宵, 梁颖, 刘贤金. 柠檬烯对食源性病原菌的抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 306-312.
[4] 庄远红,刘静娜,黄家福,林娇芬,潘裕添. 食用菌壳聚糖卡波姆复合凝胶的稳定性及其抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 147-152.
[5] 张希, 杨明, 宋飞, 张辉*, 冯凤琴*. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 155-160.
[6] 王春荣, 方程吉, 余庆青, 蒋鹏, 田薇*. 菊米超临界CO2萃取物的气相色谱质谱分析及其抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 167-172.
[7] 赵亦静, 倪密, 诺林, 王学德*. 人工合成抗菌肽对棉花黄萎病菌的抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2013, 39(1): 11-.
[8] 张武岗, 冯俊涛, 方香玲, 薛泉宏, 张兴. 放线菌19G-317菌株的鉴定及其抑菌活性研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 243-248.
[9] 易晓华,冯俊涛,方香玲,李玉平,张 兴. 除虫菊内生拟盘多毛孢Y1菌株的生物学特性及其对植物病原菌的抑制作用[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 516-524.
[10] 郝晓娟 刘波 谢关林 葛慈斌 林娟. 短短芽孢杆菌JK-2菌株抑菌物质特性的研究 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(5): 484-489.
[11] 李肖梁  尹兆正  钱娅  朱志刚  方维焕 . 抗嗜水气单胞菌IgY的提纯及体外抑菌效果研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(4): 503-506.
[12] 汪以真  韩菲菲  黄海青. 小白鼠乳铁蛋白基因片段克隆及不同泌乳阶段乳铁蛋白基因表达的差异[J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 83-88.