Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 635-643    DOI: 10.3785/j.issn.1008-9209.2021.11.262
资源利用与环境保护     
复合生化抑制剂对稻田氮素转化和水稻生长的影响
俞巧钢1,2(),黄郑宸1,2,叶静1,孙万春1,林辉1,王强1,王峰1,马军伟1,2()
1.浙江省农业科学院环境资源与土壤肥料研究所,杭州 310021
2.浙江农林大学环境与资源学院,杭州 311300
Effects of combined biochemical inhibitors on nitrogen transformation and rice growth in paddy fields
Qiaogang YU1,2(),Zhengchen HUANG1,2,Jing YE1,Wanchun SUN1,Hui LIN1,Qiang WANG1,Feng WANG1,Junwei MA1,2()
1.Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
2.College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
 全文: PDF(975 KB)   HTML
摘要:

选择东南沿海种植单季水稻的典型青紫泥土壤稻田,研究含脲酶抑制剂正丁基硫代磷酰三胺[N-(n-butyl)thiophosphoric triamide, NBPT]和硝化抑制剂3,4-二甲基吡唑磷酸盐(3, 4-dimethylpyrazole phosphate, DMPP)复合生化抑制剂的尿素在单施、分施及减施模式下,田面水和土壤氮素的动态变化特征以及对水稻生长的影响。结果表明:与常规尿素处理相比,添加NBPT和DMPP复合生化抑制剂的尿素按50%基肥和50%追肥2次施用,田面水铵态氮、硝态氮、亚硝态氮含量在水稻返青期和分蘖初期分别下降7.0%和13.2%、46.5%和50.5%、75.4%和58.2%;土壤铵态氮含量在返青期下降21.8%,在分蘖末期和拔节期增加27.5%和9.3%;水稻株高、分蘖数和叶绿素含量在分蘖期和拔节期分别增加4.8%和4.1%、4.9%和11.8%、17.8%和15.9%。与常规尿素处理相比,添加NBPT和DMPP复合生化抑制剂的尿素按一次性基施和分2次施用,成熟期水稻籽粒产量分别增加6.8%和12.5%,生物量分别增加9.2%和12.6%。综上所述,NBPT和DMPP复合生化抑制剂的施用可有效抑制田面水和土壤铵态氮和硝态氮含量的快速增加,延缓氮素形态转化,维持田面水和土壤中相对较低的硝态氮含量,有助于降低稻田氮素流失风险,同时,促进水稻的生长,提高其产量。

关键词: 田面水土壤氮素尿素正丁基硫代磷酰三胺3,4-二甲基吡唑磷酸盐    
Abstract:

By selecting a typical blue clayey paddy soil with planting single-season rice in the southeast coast, we studied the effects of urea fertilizer containing N-(n-butyl) thiophosphoric triamide (NBPT, urease inhibitor) and 3, 4-dimethylpyrazole phosphate (DMPP, nitrification inhibitors) biochemical inhibitors on the nitrogen transformation in the surface water and soil and rice growth under the different fertilization times and levels. The results showed that: compared with the conventional urea fertilizer treatment, when the urea added with NBPT and DMPP combined biochemical inhibitors was applied twice as 50% base fertilizer and 50% topdressing, the concentrations of ammonium, nitrate and nitrite in field surface water decreased by 7.0% and 13.2%, 46.5% and 50.5%, 75.4% and 58.2% at the regreening stage and early tillering stage of rice, respectively; the ammonium concentration in soil decreased by 21.8% at the regreening stage and increased by 27.5% and 9.3% at the later tillering stage and jointing stage of rice; besides, the plant height, tiller number and chlorophyll content of rice were increased by 4.8% and 4.1%, 4.9% and 11.8%, 17.8% and 15.9% at the tillering stage and jointing stage, respectively. Furthermore, the yield and biomass of rice increased by 6.8% and 12.5%, 9.2% and 12.6%, respectively, at the mature stage, when the urea added with NBPT and DMPP combined biochemical inhibitors was applied once as base fertilizer or twice as 50% base fertilizer and 50% topdressing. In conclusion, the combined application of NBPT and DMPP biochemical inhibitors can effectively inhibit the rapid increase of ammonium and nitrate nitrogen in soil and field surface water, delay the transformation rate of nitrogen form, and maintain the relatively low nitrate nitrogen concentration in the surface water and soil in the rice fields, which can reduce the risk of nitrogen loss in paddy fields, promote rice growth and increase rice yield.

Key words: field surface water    soil nitrogen    urea    N-?(n-butyl) thiophosphoric triamide    3, ?4-dimethylpyrazole phosphate
收稿日期: 2021-11-26 出版日期: 2022-11-02
CLC:  X 52  
基金资助: 浙江省重点研发计划项目(2020C02030);浙江省科技创新领军人才项目(2021R52045)
通讯作者: 马军伟     E-mail: yqganghzzj@sina.com;majw111@126.com
作者简介: 俞巧钢(https://orcid.org/0000-0002-3983-3304),E-mail:yqganghzzj@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
俞巧钢
黄郑宸
叶静
孙万春
林辉
王强
王峰
马军伟

引用本文:

俞巧钢,黄郑宸,叶静,孙万春,林辉,王强,王峰,马军伟. 复合生化抑制剂对稻田氮素转化和水稻生长的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 635-643.

Qiaogang YU,Zhengchen HUANG,Jing YE,Wanchun SUN,Hui LIN,Qiang WANG,Feng WANG,Junwei MA. Effects of combined biochemical inhibitors on nitrogen transformation and rice growth in paddy fields. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 635-643.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.11.262        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/635

处理Treatment返青期Regreening stage分蘖初期Early tillering stage分蘖末期Late tillering stage拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK4.83e0.96f0.26e0.29d0.53d0.33d
CU69.66b1.67c1.19c1.08ab1.12a1.00c
IU64.80c1.45d4.38a1.15a0.84b1.09bc
IUT83.45a3.88a0.66d0.99b0.72bc1.28a
IU2061.25d1.13e2.13b0.77c0.71c1.16ab
IUT2071.69b3.18b0.52d0.42d0.67c0.89c
表1  水稻不同生育期田面水铵态氮含量 (mg/L)
处理Treatment返青期Regreening stage分蘖初期Early tillering stage

分蘖末期

Late tillering stage

拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK3.74f1.80f24.35e0.81e0.33c1.36a
CU10.23a5.03a49.13a1.56a0.38ab2.35a
IU5.47d2.49d43.53b1.24b0.41a2.06a
IUT8.21b4.72b31.32d1.07c0.34bc1.67cd
IU204.56e2.08e41.24c1.13c0.31c1.82bc
IUT208.14c4.25c25.98e1.00d0.32c1.58d
表2  水稻不同生育期田面水硝态氮含量 (mg/L)
处理Treatment返青期Regreening stage分蘖初期Early tillering stage

分蘖末期

Late tillering stage

拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK4.25d18.03d7.12cd4.35c8.70cd1.68c
CU37.69a36.19a97.62a15.22a15.84a2.23b
IU9.28c15.13d7.40c12.67b10.60b2.89a
IUT15.34b25.37b8.48b4.57c10.87b2.29b
IU203.71d11.99e6.77d10.95b9.34cd2.48a
IUT204.52d21.49c7.67c2.97c7.81d1.59c
表3  水稻不同生育期田面水亚硝态氮含量 (μg/L)
处理Treatment返青期Regreening stage分蘖初期Early tillering stage

分蘖末期

Late tillering stage

拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK89.46e28.02d29.19f36.48d45.80c5.46b
CU493.69a56.36c104.35c67.84b54.62ab11.93a
IU386.29b63.95b133.09a74.17a58.58a13.29a
IUT270.74d81.97a65.32d68.30b53.70ab13.16a
IU20351.62c60.43b125.53b72.55ab53.40ab11.37a
IUT20260.41d63.91b56.67e44.76c49.80b12.59a
表4  水稻不同生育期表层土壤铵态氮含量 (mg/kg)
处理Treatment返青期Regreening stage分蘖初期Early tillering stage

分蘖末期

Late tillering stage

拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK0.28d0.25c12.02d8.36a4.12a6.95c
CU1.39a1.34a24.12a6.35a4.01a10.15a
IU0.77c0.22c21.09b5.34b2.42b7.49b
IUT1.11b0.20c16.05c5.34b2.05b10.91a
IU200.80c0.56b20.08b5.02bc2.33b7.12bc
IUT200.71c0.40b4.96e4.67c1.93b10.85a
表5  水稻不同生育期表层土壤硝态氮含量 (mg/kg)

处理

Treatment

返青期

Regreening stage

分蘖初期Early tillering stage

分蘖末期

Late tillering stage

拔节期Jointing stage孕穗期Booting stage灌浆期Pustulation stage
CK60.17f13.79c22.95bc71.01d9.14bc9.39b
CU146.88a28.53a45.49a124.70a10.92a12.46a
IU74.38e19.05b20.92c108.49b10.66a13.06a
IUT124.67b12.74cd10.00e104.98b9.90b9.37b
IU2082.04d20.11b15.46d88.49c6.85d10.82b
IUT20100.39c10.63d26.38b94.53bc8.63c11.40ab
表6  水稻不同生育期表层土壤亚硝态氮含量 (μg/kg)
图1  水稻不同生育期的株高、分蘖数和叶绿素含量短栅上不同小写字母表示同一生育期不同处理间在P<0.05水平差异有统计学意义。
处理Treatment孕穗期 Booting stage灌浆期 Pustulation stage成熟期 Mature stage
秸秆Straw穗Tassel

合计

Total

秸秆Straw穗Tassel

合计

Total

秸秆Straw

Tassel

合计

Total

CK1.75±0.15d0.30±0.02d2.051.53±0.06d1.35±0.06c2.883.40±0.14d4.08±0.25c7.48
CU2.74±0.12c0.41±0.03c3.153.29±0.09c3.29±0.35b6.586.01±0.19c7.14±0.24b13.15
IU3.89±0.11a0.59±0.03a4.484.25±0.32a3.86±0.32a8.116.77±0.32a8.03±0.28a14.80
IUT3.08±0.05b0.50±0.02b3.583.77±0.26b3.70±0.19a7.476.56±0.22a7.63±0.27a14.19
IU202.80±0.11c0.44±0.02c3.243.20±0.23c3.35±0.16b6.556.28±0.22b7.41±0.40b13.69
IUT202.72±0.06c0.41±0.02c3.133.16±0.11c3.55±0.14ab6.716.30±0.25b7.25±0.58b13.55
表7  水稻不同生育期的生物量变化 (t/hm2)
1 朱兆良,金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报,2013,‍19(2):259-273. DOI:10.11674/zwyf.2013.0201
ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 259-273. (in Chinese with English abstract)
doi: 10.11674/zwyf.2013.0201
2 巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795. DOI:10.11674/zwyf.2014.0401
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783-795. (in Chinese with English abstract)
doi: 10.11674/zwyf.2014.0401
3 怀燕,陈照明,张耿苗,等.水稻侧深施肥技术的氮肥减施效应[J].浙江大学学报(农业与生命科学版),2020,46(2):217-224. DOI:10.3785/j.issn.1008-9209.2019.05.091
HUAI Y, CHEN Z M, ZHANG G M, et al. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2020, 46(2): 217-224. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.05.091
4 姜利红,谭力彰,田昌,等.不同施肥对双季稻田径流氮磷流失特征的影响[J].水土保持学报,2017,31(6):33-38, 45. DOI:10.13870/j.cnki.stbcxb.2017.06.006
JIANG L H, TAN L Z, TIAN C, et al. Effects of fertilizer applications on runoff nitrogen and phosphorus loss in double cropping paddy field[J]. Journal of Soil and Water Conservation, 2017, 31(6): 33-38, 45. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2017.06.006
5 张卫峰,马林,黄高强,等.中国氮肥发展、贡献和挑战[J].中国农业科学,2013,46(15):3161-3171. DOI:10.3864/j.issn.0578-1752.2013.15.010
ZHANG W F, MA L, HUANG G Q, et al. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country[J]. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.15.010
6 俞巧钢,胡若兰,叶静,等.增效剂对稻田田面水氮素转化及水稻产量的影响[J].水土保持学报,2019,33(6):288-292. DOI:10.13870/j.cnki.stbcxb.2019.06.040
YU Q G, HU R L, YE J, et al. Effects of synergist addition on the nitrogen transformation of surface water and rice yield in paddy field[J]. Journal of Soil and Water Conservation, 2019, 33(6): 288-292. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2019.06.040
7 王苓,张民,刘之广,等.土壤水吸力对控释尿素养分释放特征的影响[J].土壤学报,2017,54(2):434-443. DOI:10.11766/trxb201606230178
WANG L, ZHANG M, LIU Z G, et al. Influence of soil water suction on nutrient release characteristics of controlled-release urea[J]. Acta Pedologica Sinica, 2017, 54(2): 434-443. (in Chinese with English abstract)
doi: 10.11766/trxb201606230178
8 张富林,吴茂前,夏颖,等.江汉平原稻田田面水氮磷变化特征研究[J].土壤学报,2019,56(5):1190-1200. DOI:10.11766/trxb201811230529
ZHANG F L, WU M Q, XIA Y, et al. Changes in nitrogen and phosphorus in surface water of paddy field in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(5): 1190-1200. (in Chinese with English abstract)
doi: 10.11766/trxb201811230529
9 HOSSAIN K Z, MONREAL C M, SAYARI A. Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea[J]. Colloids and Surfaces B: Biointerfaces, 2008, 62(1): 42-50. DOI:10.1016/j.colsurfb.2007.09.016
doi: 10.1016/j.colsurfb.2007.09.016
10 李学红,李东坡,武志杰,等.脲酶/硝化抑制剂在黑土和褐土中对尿素氮转化的调控效果[J].应用生态学报,2021,32(4):1352-1360. DOI:10.13287/j.1001-9332.202104.023
LI X H, LI D P, WU Z J, et al. Effect of urease/nitrification inhibitor on urea nitrogen conversion in black soil and cinnamon soil[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1352-1360. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202104.023
11 张惠,王志国,张晴雯,等.抑制剂NBPT/DCD不同组合对灌区碱性灌淤土中氨挥发及有效氮积累量的影响[J].农业环境科学学报,2015,34(3):606-612. DOI:10.11654/jaes.2015.03.026
ZHANG H, WANG Z G, ZHANG Q W, et al. Effects of different NBPT/DCD combinations on ammonia volatilization and available-N in alkaline anthropogenic-alluvial soil in irrigated area[J]. Journal of Agro-Environment Science, 2015, 34(3): 606-612. (in Chinese with English abstract)
doi: 10.11654/jaes.2015.03.026
12 串丽敏,安志装,杜连凤,等.脲酶/硝化抑制剂对壤质潮土氮素淋溶影响的模拟研究[J].中国农业科学,2011,44(19):4007-4014. DOI:10.3864/j.issn.0578-1752.2011.19.010
CHUAN L M, AN Z Z, DU L F, et al. Effects of urease/nitrification inhibitor on soil nitrogen leaching loss in loamy fluvo-aquic soil[J]. Scientia Agricultura Sinica, 2011, 44(19): 4007-4014. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2011.19.010
13 曾后清,朱毅勇,王火焰,等.生物硝化抑制剂:一种控制农田氮素流失的新策略[J].土壤学报,2012,49(2):382-388.
ZENG H Q, ZHU Y Y, WANG H Y, et al. Biological nitrification inhibitor: a new strategy for controlling nitrogen loss from farmland[J]. Acta Pedologica Sinica, 2012, 49(2): 382-388. (in Chinese with English abstract)
14 陆玉芳,施卫明.生物硝化抑制剂的研究进展及其农业应用前景[J].土壤学报,2021,58(3):545-557. DOI:10.11766/trxb202003120113
LU Y F, SHI W M. Progress in research and agricultural application prospect of biological nitrification inhibitors[J]. Acta Pedologica Sinica, 2021, 58(3): 545-557. (in Chinese with English abstract)
doi: 10.11766/trxb202003120113
15 ZERULLA W, BARTH T, DRESSEL J, et al. 3, 4-dimethyphyrazle phosphate: a new nitrification inhibitor for agriculture and horticulture[J]. Biology and Fertility of Soils, 2001, 34(2): 79-84. DOI:10.1007/s003740100380
doi: 10.1007/s003740100380
16 YU Q G, MA J W, SUN W C, et al. Influences of nitrification inhibitor 3, 4-dimethylpyrazole phosphate on heavy metals and inorganic nitrogen transformation in the rice field surface water[J]. Water, Air, and Soil Pollution, 2017, 228: 162. DOI:10.1007/s11270-017-3352-2
doi: 10.1007/s11270-017-3352-2
17 刘钰莹,张妍,汪哲远,等.硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J].浙江大学学报(农业与生命科学版),2021,47(2):223-232. DOI:10.3785/j.issn.1008-9209.2021.02.091
LIU Y Y, ZHANG Y, WANG Z Y, et al. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2021, 47(2): 223-232. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2021.02.091
18 郭广正,张芬,沈远鹏,等.减氮配施硝化抑制剂对大白菜农学和环境效应评价[J].农业环境科学学报,2020,39(10):2307-2315. DOI:10.11654/jaes.2020-0884
GUO G Z, ZHANG F, SHEN Y P, et al. Comprehensive assessment of the agronomic and environmental effects of N application rate reduction combined with nitrification inhibitor on Chinese cabbage[J]. Journal of Agro-Environment Science, 2020, 39(10): 2307-2315. (in Chinese with English abstract)
doi: 10.11654/jaes.2020-0884
19 MENG X T, LI Y Y, YAO H Y, et al. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil[J]. Applied Soil Ecology, 2020, 154: 103665. DOI:10.1016/j.apsoil.2020.103665
doi: 10.1016/j.apsoil.2020.103665
20 俞巧钢,陈英旭.DMPP对稻田田面水氮素转化及流失潜能的影响[J].中国环境科学,2010,30(9):1274-1280.
YU Q G, CHEN Y X. Influences of nitrification inhibitor 3, 4-dimethylpyrazole phosphate on nitrogen transformation and potential runoff loss in rice fields[J]. China Environmental Science, 2010, 30(9): 1274-1280. (in Chinese with English abstract)
21 罗炬,邵高能,魏祥进,等.一个控制水稻株高QTL qPH3的遗传分析[J].中国水稻科学,2012,26(4):417-422. DOI:10.3969/j.issn.1001-7216.2012.04.005
LUO J, SHAO G N, WEI X J, et al. Genetic analysis of a QTL qPH3 for plant height in rice[J].Chinese Journal of Rice Science, 2012, 26(4): 417-422. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2012.04.005
22 杨海龙,杨佳恒,蔡金洋.不同施氮水平下水稻叶片SPAD变化趋势及其与产量的关系[J].浙江农业科学,2020,61(11):2200-2204. DOI:10.16178/j.issn.0528-9017.20201102
YANG H L, YANG J H, CAI J Y. Variation trend of leaf SPAD and its relationship with rice yield under different nitrogen application levels[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(11): 2200-2204. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20201102
[1] 彭志芸,吕旭,伍杂日曲,舒川海,谌洁,向开宏,杨志远,马均. 麦(油)-稻轮作下秸秆还田与氮肥运筹对土壤氮素供应及直播稻产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 45-56.
[2] 刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.
[3] 叶雪珠  何积秀  王小骊  何念祖. 影响包膜尿素氮溶出的因素[J]. 浙江大学学报(农业与生命科学版), 2001, 27(3): 307-310.
[4] 叶雪珠 马军伟 何念祖 俞巧钢. 新型包膜尿素的氮释放动态研究[J]. 浙江大学学报(农业与生命科学版), 2000, 26(1): 114-118.