Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (2): 223-232    DOI: 10.3785/j.issn.1008-9209.2021.02.091
资源利用与环境保护     
硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响
刘钰莹1(),张妍1,汪哲远1,李廷强1,2()
1.浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,杭州 310058
2.国家级环境与资源实验教学示范中心(浙江大学),杭州 310058
Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil
Yuying LIU1(),Yan ZHANG1,Zheyuan WANG1,Tingqiang LI1,2()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China
 全文: PDF(1330 KB)   HTML
摘要:

以酸性和中性水稻土为供试土壤,通过盆栽试验研究3,4-二甲基吡唑磷酸盐(3, 4-dimethylpyrazole phosphate, DMPP)与玉米秸秆生物炭配施对水稻土氮素转化及氮肥利用率的影响。试验设置4个处理:对照(CK)、DMPP、DMPP+300 ℃生物炭(DMPP+300BC)、DMPP+500 ℃生物炭(DMPP+500BC)。结果表明:与单施DMPP处理相比,DMPP配施500 ℃生物炭使中性水稻土中水稻籽粒产量和氮肥利用率分别提高8.5%和10.6%(P<0.05),但对酸性水稻土作用效果不显著。DMPP配施生物炭能够有效延长硝化抑制时长,在水稻培养42 d后,土壤铵态氮(NH4-N)含量高于单施DMPP处理;DMPP配施生物炭能够有效抑制NH4-N向硝态氮(NO3-N)转化,且对中性水稻土的效果优于酸性水稻土,500 ℃生物炭的效果优于300 ℃生物炭。水稻培养21 d后,与单施DMPP处理相比,DMPP配施300 ℃和500 ℃生物炭使酸性水稻土反硝化活性分别降低了45.4%和80.9%(P<0.05),并显著高于中性水稻土。水稻培养21 d内,与单施DMPP相比,DMPP配施生物炭对2种水稻土氨氧化古菌(ammonia oxidizing archaea, AOA)丰度没有显著影响,但提高了酸性水稻土中氨氧化细菌(ammonia oxidizing bacteria, AOB)的丰度,而中性水稻土中AOB的丰度显著降低(P<0.05)。本研究结果表明,DMPP配施500 ℃生物炭能够通过延长硝化抑制时长和降低中性水稻土中AOB的丰度来抑制硝化作用,提高水稻籽粒产量和氮肥利用率。

关键词: 水稻土3,4-二甲基吡唑磷酸盐氮素转化氨氧化微生物氮肥利用率    
Abstract:

The effects of combined application of 3, 4-dimethylpyrazole phosphate (DMPP) and corn-stalk biochar on nitrogen transformation and nitrogen use efficiency in acid and neutral paddy soils were investigated by pot experiments. Four treatments were set up as follows: control (CK), DMPP, DMPP+300 ℃ biochar (DMPP+300BC), DMPP+500 ℃ biochar (DMPP+500BC). The results showed that compared with the DMPP treatment, DMPP combined with 500 ℃ biochar significantly increased rice grain yield and nitrogen use efficiency in the neutral paddy soil by 8.5% and 10.6% (P<0.05), respectively, but had no significant effect in the acid paddy soil. DMPP combined with biochar could effectively prolong the duration of nitrification inhibition. After 42 d of rice culture, the ammonium nitrogen (NH4-N) content in the two paddy soils was higher than that of the DMPP treatment. DMPP combined with biochar could effectively inhibit the transformation of NH4-N to nitrate nitrogen (NO3-N), and the effect in the neutral paddy soil was better than that in the acid paddy soil, and the effect of 500 ℃ biochar was better than that of 300 ℃ biochar. After 21 d of rice culture, DMPP combined with 300 ℃ and 500 ℃ biochars reduced the denitrification activities of acid paddy soil by 45.4% and 80.9%, respectively, which were better than those of neutral paddy soil. Within 21 d of rice culture, DMPP combined with biochar had no significant effect on the abundance of ammonia oxidizing archaea (AOA) in the two paddy soils, but increased the abundance of ammonia oxidizing bacteria (AOB) in the acid paddy soil, while decreased the abundance of AOB in the neutral paddy soil, as compared with the DMPP treatment. In conclusion, DMPP combined with 500 ℃ biochar can inhibit nitrification by prolonging the duration of nitrification inhibition and reducing the abundance of AOB in the neutral paddy soil, thus improve rice grain yield and nitrogen use efficiency.

Key words: paddy soil    3, 4-dimethylpyrazole phosphate    nitrogen transformation    ammonia oxidizing micro-organisms    nitrogen use efficiency
收稿日期: 2021-02-09 出版日期: 2021-04-25
CLC:  S 143.16  
基金资助: 国家重点研发计划(2017YFD0200102)
通讯作者: 李廷强     E-mail: 1264383043@qq.com;litq@zju.edu.cn
作者简介: 刘钰莹(https://orcid.org/0000-0002-7480-6395),E-mail:1264383043@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘钰莹
张妍
汪哲远
李廷强

引用本文:

刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.

Yuying LIU,Yan ZHANG,Zheyuan WANG,Tingqiang LI. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 223-232.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.02.091        http://www.zjujournals.com/agr/CN/Y2021/V47/I2/223

土壤

Soil

pH

有机质

Organic

matter/(g/kg)

全氮

Total

nitrogen/(g/kg)

碱解氮

Alkaline

nitrogen/(mg/kg)

有效磷

Available

phosphorus/(mg/kg)

速效钾

Available

potassium/(mg/kg)

酸性水稻土 Acid paddy soil4.8613.61.0671.820.483.9
中性水稻土 Neutral paddy soil7.4518.41.3879.428.696.6
表1  土壤基本理化性质

生物炭

Biochar

pH

比表面积

Specific surface area/(m2/g)

w(灰分)

Ash content/%

H/CO/Cw(元素) Elemental content/%
CHON
300BC9.366.2416.230.810.4648.823.3129.781.86
500BC10.4216.3519.650.500.2756.152.3620.221.62
表2  不同生物炭的基本理化性质

微生物

Microbe

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

目标片段长度

Target fragment length/bp

文献

Reference

AOAArch-amoAFSTAATGGTCTGGCTTAGACG635[16]
Arch-amoARGCGGCCATCCATCTGGTATGT
AOBamoA-1FGGGGTTTCTACTGGTGGT491[17]
amoA-2RCCCCTCKGSAAAGCCTTCTTC
表3  用于PCR扩增的引物序列

土壤

Soil

处理

Treatment

生物量/(g/盆)

Biomass/(g/pot)

w(氮) Nitrogen content/%

氮肥利用率

Nitrogen use efficiency/%

秸秆 Straw籽粒 Grain秸秆 Straw籽粒 Grain

酸性水稻土

Acid paddy soil

CK87.12b94.42b1.15a3.20a35.16b
DMPP90.51a103.74a1.30a3.43a40.24a
DMPP+300BC92.42a103.07a1.32a3.44a40.79a
DMPP+500BC93.38a106.10a1.37a3.47a42.31a

中性水稻土

Neutral paddy soil

CK74.17b80.36c1.14a3.08b34.51c
DMPP78.65ab89.47b1.16a3.11b39.14b
DMPP+300BC82.61a96.02a1.18a3.25ab40.16b
DMPP+500BC80.80a97.11a1.20a3.42a43.27a
表4  DMPP配施生物炭对水稻生物量和氮肥利用率的影响
图1  DMPP配施生物炭对水稻土NH4+-N和NO3--N含量的影响

生长时期

Growth period/d

酸性水稻土 Acid paddy soil中性水稻土 Neutral paddy soil
DMPPDMPP+300BCDMPP+500BCDMPPDMPP+300BCDMPP+500BC
737.21a33.45a34.76a39.31a41.50a42.65a
2142.73c46.27b50.43a47.90c52.29b58.52a
4226.88b31.84a36.38a29.50c37.89b41.65a
902.18a4.62a4.32a8.55a9.23a9.83a
表5  DMPP配施生物炭对水稻土硝化抑制率的影响 (%)
图2  DMPP配施生物炭对水稻土反硝化活性的影响短栅上不同小写字母表示在同一培养时间不同处理间在P<0.05水平差异有统计学意义。
图3  DMPP配施生物炭对水稻土氨氧化微生物丰度的影响短栅上不同小写字母表示在同一培养时间不同处理间在P<0.05水平差异有统计学意义。
1 朱兆良.中国土壤氮素研究.土壤学报,2008,45(5):778-783.
ZHU Z L. Research on soil nitrogen in China. Acta Pedologica Sinica, 2008,45(5):778-783. (in Chinese with English abstract)
2 俞巧钢,胡若兰,叶静,等.增效剂对稻田田面水氮素转化及水稻产量的影响.水土保持学报,2019,33(6):288-292. DOI:10.13870/j.cnki.stbcxb.2019.06.040
YU Q G, HU R L, YE J, et al. Effects of synergist addition on the nitrogen transformation of surface water and rice yield in paddy field. Journal of Soil and Water Conservation, 2019,33(6):288-292. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2019.06.040
3 李杰,石元亮,王玲莉,等.硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响.植物营养与肥料学报,2019,25(12):2095-2101. DOI:10.11674/zwyf.19361
LI J, SHI Y L, WANG L L, et al. Comparison of nitrification inhibitors on N2O emission and abundances of nitrifier and denitrifier in paddy soil. Journal of Plant Nutrition and Fertilizers, 2019,25(12):2095-2101. (in Chinese with English abstract)
doi: 10.11674/zwyf.19361
4 郭俊丽,刘毅,魏文学,等.双氰胺和3,4-二甲基吡唑磷酸盐对蔬菜种植土壤氨氧化细菌和古菌的影响.环境科学,2019,40(11):5142-5150. DOI:10.13227/j.hjkx.201902031
GUO J L, LIU Y, WEI W X, et al. Impact of dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in a vegetable planting soil. Environmental Science, 2019,40(11):5142-5150. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201902031
5 XU C, WU L H, JU X T, et al. Role of nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) in NO3--N accumulation in greengrocery (Brassica campestris L. ssp. chinensis) and vegetable soil. Journal of Environmental Sciences, 2005,17(1):81-83.
6 俞巧钢,殷建祯,马军伟,等.硝化抑制剂DMPP应用研究进展及其影响因素.农业环境科学学报,2014,33(6):1057-1066. DOI:10.11654/jaes.2014.06.001
YU Q G, YIN J Z, MA J W, et al. Effects of nitrification inhibitor DMPP application in agricultural ecosystems and their influencing factors: a review. Journal of Agro-Environment Science, 2014,33(6):1057-1066. (in Chinese with English abstract)
doi: 10.11654/jaes.2014.06.001
7 SHAVIV A, MIKKELSEN R L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environ-mental degradation: a review. Fertilizer Research, 1993,35:1-12. DOI:10.1007/BF00750215
doi: 10.1007/BF00750215
8 杨剑波,李学超,徐晶晶,等.2种硝化抑制剂在不同土壤中的效果比较.土壤,2014,46(2):319-324. DOI:10.13758/j.cnki.tr.2014.02.021
YANG J B, LI X C, XU J J, et al. Effects of nitrification inhibitors on nitrogen transformation in different soils. Soils, 2014,46(2):319-324. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2014.02.021
9 NELISSEN V, RUTTING T, HUYGENS D, et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 2012,55:20-27. DOI:10.1016/j.soilbio.2012.05.019
doi: 10.1016/j.soilbio.2012.05.019
10 COELHO M A, FUSCONI R, PINHEIRO L, et al. The combination of compost or biochar with urea and NBPT can improve nitrogen-use efficiency in maize. Anais da Academia Brasileira de Ciencias, 2018,90(2):1695-1703. DOI:10.1590/0001-3765201820170416
doi: 10.1590/0001-3765201820170416
11 CHEN H, YIN C, FAN X P, et al. Reduction of N2O emission by biochar and/or 3, 4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Science of the Total Environment, 2019,694:133658. DOI:10.1016/j.scitotenv.2019.133658
doi: 10.1016/j.scitotenv.2019.133658
12 KEIBLINGER K M, ZEHETNER F, MENTLER A, et al. Biochar application increases sorption of nitrification inhibitor 3, 4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research, 2018,25:11173-11177. DOI:10.1007/s11356-018-1658-2
doi: 10.1007/s11356-018-1658-2
13 MULVANEY R L. Nitrogen-inorganic forms//SPARKS D L. Methods of Soil Analysis: Part3. Chemical Methods: SSSA Book Series No. 5. Madison, US: Soil Science Society of America and American Society of Agronomy, 1996.
14 PHILIPPOT L, SPOR A, HENAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 2013,7:1609-1619. DOI:10.1038/ismej.2013.34
doi: 10.1038/ismej.2013.34
15 邓穗生,洪彩香.靛酚蓝比色法测定植物全氮含量方法的改进.热带农业科学,2013,33(4):5-7.
DENG S S, HONG C X. Improvement of phenol method for determining total nitrogen in plant. Chinese Journal of Tropical Agriculture, 2013,33(4):5-7. (in Chinese with English abstract)
16 FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS, 2005,102:14683-14688. DOI:10.1073/pnas.0506625102
doi: 10.1073/pnas.0506625102
17 ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997,63(12):4704-4712. DOI:10.1128/AEM.63.12.4704-4712.1997
doi: 10.1128/AEM.63
18 刘建涛,许靖,孙志梅,等.氮素调控剂对不同类型土壤氮素转化的影响.应用生态学报,2014,25(10):2901-2906. DOI:10.13287/j.1001-9332.20140801.012
LIU J T, XU J, SUN Z M, et al. Effects of different nitrogen regulators on nitrogen transformation in different soil types. Chinese Journal of Applied Ecology, 2014,25(10):2901-2906. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.20140801.012
19 ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment, 2010,139(4):469-475. DOI:10.1016/j.agee.2010.09.003
doi: 10.1016/j.agee.2010.09.003
20 WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change. Nature Communications, 2010,1:56. DOI:10.1038/ncomms1053
doi: 10.1038/ncomms1053
21 张伟明,孟军,王嘉宇,等.生物炭对水稻根系形态与生理特性及产量的影响.作物学报,2013,39(8):1445-1451. DOI:10.3724/SP.J.1006.2013.01445
ZHANG W M, MENG J, WANG J Y, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agronomica Sinica, 2013,39(8):1445-1451. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01445
22 GUNDALE M J, DELUCA T H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils, 2007,43(3):303-311. DOI:10.1007/s00374-006-0106-5
doi: 10.1007/s00374-006-0106-5
23 张文学,杨成春,王少先,等.脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响.中国水稻科学,2017,31(4):417-424. DOI:10.16819/j.1001-7216.2017.7008
ZHANG W X, YANG C C, WANG S X, et al. Effects of urease inhibitor and nitrification inhibitor on nitrogen trans-formation in paddy soil. Chinese Journal of Rice Science, 2017,31(4):417-424. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.7008
24 李君,刘涛,褚贵新.脲酶抑制剂对石灰性土壤尿素转化及N2O排放的影响.农业环境科学学报,2014,33(9):1866-1872. DOI:10.11654/jaes.2014.09.027
LI J, LIU T, CHU G X. Responses of urea transformation dynamics and nitrous oxide to three urease inhibitors in calcareous soil. Journal of Agro-Environment Science, 2014,33(9):1866-1872. (in Chinese with English abstract)
doi: 10.11654/jaes.2014.09.027
25 BARTH G, TUCHER S V, SCHMIDHALTER U. Influence of soil parameters on the efficiency of the new nitrification inhibitor DMPP//HORST W J, SCHENK M K, BüRKERT A. Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2001:756-757.
26 LEHMANN J, JOSEPH S. Biochar for Environmental Management: Science, Technology and Implementation. London, UK: Routledge, 2015:15801-15811.
27 董成,陈智勇,谢迎新,等.生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响.中国农业科学,2020,53(19):4024-4034. DOI:10.3864/j.issn.0578-1752.2020.19.015
DONG C, CHEN Z Y, XIE Y X, et al. Effects of successive biochar addition to soil on nitrogen functional micro-organisms and nitrous oxide emission. Scientia Agricultura Sinica, 2020,53(19):4024-4034. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.015
28 许云翔,何莉莉,陈金媛,等.生物炭对农田土壤氨挥发的影响机制研究进展.应用生态学报,2020,31(12):4312-4320. DOI:10.13287/j.1001-9332.202012.021
XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: a review. Chinese Journal of Applied Ecology, 2020,31(12):4312-4320. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202012.021
29 AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of Environmental Management, 2020,255:109891. DOI:10.1016/j.jenvman.2019.109891
doi: 10.1016/j.jenvman.2019.109891
30 WANG C, LU H H, DONG D, et al. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community. Environmental Science & Technology, 2013,47(13):7341-7349. DOI:10.1021/es305293h
doi: 10.1021/es305293h
31 ZAMAN M, SAGGA S, BLENNERHASSETT J D, et al. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biology and Biochemistry, 2009,41(6):1270-1280. DOI:10.1016/j.soilbio.2009.03.011
doi: 10.1016/j.soilbio.2009.03.011
32 KLEINEIDAM K, KO?MRLJ K, KUBLIK S, et al. Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) on ammonia oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere, 2011,84(1):182-186. DOI:10.1016/j.chemosphere.2011.02.086
doi: 10.1016/j.chemosphere.2011.02.086
33 李明,李忠佩,刘明,等.不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响.中国农业科学,2015,48(7):1361-1369. DOI:10.3864/j.issn.0578-1752.2015.07.11
LI M, LI Z P, LIU M, et al. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil. Scientia Agricultura Sinica, 2015,48(7):1361-1369. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.07.11
34 梁桓,索全义,侯建伟,等.不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性.土壤,2015,47(5):886-891. DOI:10.13758/j.cnki.tr.2015.05.012
LIANG H, SUO Q Y, HOU J W, et al. The structure characteristics and chemical properties of maize straw biochar and Artemisia ordosica biochar prepared at different carbonization temperatures. Soils, 2015,47(5):886-891. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2015.05.012
35 简敏菲,高凯芳,余厚平.不同裂解温度对水稻秸秆制备生物炭及其特性的影响.环境科学学报,2016,36(5):1757-1765. DOI:10.13671/j. hjkxxb.2015.0657
JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw. Acta Scientiae Circumstantiae, 2016,36(5):1757-1765. (in Chinese with English abstract)
doi: 10.13671/j. hjkxxb.2015.0657
[1] 何明江,沈浩然,查婷, 于雄胜,刘杏梅. 水稻土中痕量多环芳烃的分析测定方法[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 766-774.
[2] 徐捷, 单立楠, 俞丹萍, 李竺霖, 何云峰*. 不同施肥模式对甘蓝氮素利用与流失的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 556-564.
[3] 刘彦伶, 来庆, 徐旱增, 张宣, 吴良欢, 顾艳, 何艳, 孔向军. 不同氮肥类型对黄泥田双季稻产量及氮素利用的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 403-412.
[4] 郭海超,王光火. 磷矿粉在不同磷素水平酸性水稻土中的溶解特性研究[J]. 浙江大学学报(农业与生命科学版), 2008, 34(6): 655-661.
[5] 叶静 安藤丰 符建荣等. 几种新型有机肥对菜用毛豆产量、品质及化肥氮利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2008, 34(3): 289-295.
[6] 时亚南 张奇春 王光火 郭海超 . 不同施肥处理对水稻土微生物生态特性的影响 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(5): 551-556.
[7] 王殳屹 韩琳 史奕 梅宝玲 朱建国 . 开放式大气CO2浓度增高对水稻土反硝化活性的影响[J]. 浙江大学学报(农业与生命科学版), 2007, 33(3): 284-289.
[8] 刘铭  吴良欢  路兴花  张福锁. 覆膜旱作对稻田土壤有效Fe、Mn、Zn、Cu含量的影响[J]. 浙江大学学报(农业与生命科学版), 2004, 30(6): 646-649.
[9] 方萍  谢锦良. 水稻土养分状况的综合评价 [J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 17-21.
[10] 章永松  林咸永. 淹水对两种水稻土氧化层和还原层铁氧化物转化和磷吸附的影响[J]. 浙江大学学报(农业与生命科学版), 2002, 28(5): 485-491.
[11] 朱炳良  马军伟  叶雪珠  夏朝明. 石灰氮的土壤改良作用及对蔬菜的施用效果研究 [J]. 浙江大学学报(农业与生命科学版), 2001, 27(3): 339-342.
[12] 苏玲  林咸永  章永松  杨玉爱. 水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 124-128.
[13] 陈中云 吴伟祥 闵航 陈美慈 赵宇华. 两株能利用甲烷的吸水链霉菌(Streptomyces hygroscopicus)的分离和鉴定[J]. 浙江大学学报(农业与生命科学版), 2000, 26(4): 384-388.