Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (3): 359-368    DOI: 10.3785/j.issn.1008-9209.2021.05.172
资源利用与环境保护     
复合钝化剂施用水平对镉污染农田土壤的修复效果
巩龙达1(),陈凯1,李丹2,蔡梅1,王京文2(),张奇春1()
1.浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,杭州 310058
2.杭州市农业技术推广中心,杭州 310020
Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil
Longda GONG1(),Kai CHEN1,Dan LI2,Mei CAI1,Jingwen WANG2(),Qichun ZHANG1()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Hangzhou Agricultural Technology Extension Center, Hangzhou 310020, China
 全文: PDF(1104 KB)   HTML
摘要:

为了探究复合钝化剂M(石灰、沸石、钙镁磷肥和生物质炭质量配比为71∶23∶5∶1)不同施用量对镉(Cd)污染农田土壤的修复效果,利用2年的大田试验,以不施用复合钝化剂(CK)作为对照,研究添加0.1%、0.2%、0.5%复合钝化剂(分别记为MR1、MR2、MR3)和0.5%石灰(LM)处理对土壤和农作物的影响。结果表明:复合钝化剂主要通过增加土壤pH来降低土壤中Cd的生物有效性,其3种施用量均能维持或增加作物的产量,且能够显著降低水稻秸秆和籽粒Cd含量。与CK相比,MR1、MR2、MR3和LM处理的水稻秸秆中Cd含量分别下降了11.9%、10.7%、20.5%和19.5%,籽粒中Cd含量分别下降了42.9%、57.1%、71.4%和72.1%,且各处理水稻籽粒Cd含量均低于0.2 mg/kg,都达到了食品安全标准。此外,复合钝化剂在不同程度上降低了水稻籽粒对Cd的生物富集系数和水稻对Cd的转运能力。磷脂脂肪酸分析结果表明,复合钝化剂的不同施用水平均可增加土壤细菌数量,且土壤微生物群落多样性指数较高。与LM处理相比,MR2处理的细菌数量增加了43.6%,MR3处理中革兰氏阳性菌数量明显增加,达56.5 nmol/g。总体来看,与单一施用石灰相比,0.2%的复合钝化剂处理对土壤理化性质影响较小,且增加了土壤微生物群落数量及结构多样性,说明其对农田土壤Cd污染修复的同时维持了土壤生态健康,可用于农田土壤Cd污染修复。

关键词: 复合钝化剂水稻土壤微生物磷脂脂肪酸    
Abstract:

In the case of soil cadmium (Cd) pollution becoming more and more serious, the modified in-situ fixation method is widely used as one of the remediation methods of soil heavy metal pollution. To explore the remediation effects of mixed amendment M (the mass ratio of lime, zeolite, calcium-magnesia phosphate fertilizer and biochar was 71:23∶5∶1) on Cd-contaminated farmland soil, a two-year field experiment was conducted to study the effects of applying 0.1% (MR1), 0.2% (MR2), 0.5% (MR3) of the mixed amendment and 0.5% lime (LM) on the soil and crops, taking no application of the mixed amendment as a control (CK). The results showed that the mixed amendment reduced the bioavailability of Cd in soil mainly by increasing soil pH. Three kinds of addition of the mixed amendment (MR1, MR2, MR3) could maintain or increase the yield of crops and significantly reduce the content of Cd in rice straw and grain. Compared with the CK, the Cd content in rice straw treated by MR1, MR2, MR3 and LM decreased by 11.9%, 10.7%, 20.5% and 19.5%, respectively; and the Cd content in rice grains decreased by 42.9%, 57.1%, 71.4% and 72.1%, respectively. The Cd contents in rice grains under the all treatments were lower than 0.2 mg/kg, which met the food safety standard. Moreover, the mixed amendment could reduce the Cd uptake and transport capacity and grain bioaccumulation coefficient of rice. The results of phospholipid fatty acid analysis showed that the different application levels of mix amendment could increase the soil bacteria amount and the soil microbial community diversity. Compared with the LM, the number of bacteria in the MR2 treatment increased by 43.6%, and the number of Gram-positive bacteria in the MR3 treatment increased significantly to 56.5 nmol/g. In general, compared with the single application of lime, 0.2% of mixed amendment has few effects on soil physical and chemical properties, and increases the number and diversity of soil microbial communities, indicating that it can be used for the remediation of farmland soil Cd pollution while maintaining soil ecological health.

Key words: mixed amendment    rice    soil microorganism    phospholipid fatty acid
收稿日期: 2021-05-17 出版日期: 2022-07-07
CLC:  S 156  
基金资助: 浙江省自然科学基金项目(LZ21C030002);国家自然科学基金项目(41877044)
通讯作者: 王京文,张奇春     E-mail: 21914103@zju.edu.cn;wjingwen@hz.cn;qczhang@zju.edu.cn
作者简介: 巩龙达(https://orcid.org/0000-0001-6777-3428),E-mail:21914103@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
巩龙达
陈凯
李丹
蔡梅
王京文
张奇春

引用本文:

巩龙达,陈凯,李丹,蔡梅,王京文,张奇春. 复合钝化剂施用水平对镉污染农田土壤的修复效果[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 359-368.

Longda GONG,Kai CHEN,Dan LI,Mei CAI,Jingwen WANG,Qichun ZHANG. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.05.172        https://www.zjujournals.com/agr/CN/Y2022/V48/I3/359

处理

Treatment

2018年产量

Yield in 2018

2019年产量

Yield in 2019

小麦季

Wheat season

水稻季

Rice season

小麦季

Wheat season

水稻季

Rice season

CK5 310±840b8 640±842a6 630±847a10 440±1 111a
LM5 170±800c7 910±966a4 680±865b10 110±791a
MR16 570±712a8 650±621a6 690±360a11 640±2 694a
MR26 630±1 200a8 633±525a5 310±800a10 260±1 131a
MR35 400±902b8 015±912a6 345±784a9 871±1 388a
表1  复合钝化剂不同施用水平下作物产量 (kg/hm2)

处理

Treatment

有机质

Organic matter/(g/kg)

有效磷

Available P/(mg/kg)

全氮

Total N/(g/kg)

pH

阳离子交换量

Cation exchange capacity/(cmol/kg)

CK37.5±1.8b24.6±1.3b2.3±0.1a6.5±0.4c12.6±0.6a
LM37.1±2.8b20.5±1.4c2.4±0.1a7.1±0.4a12.5±0.6a
MR136.9±1.9b27.9±1.2a2.3±0.1a6.9±0.4b12.2±0.6a
MR237.8±3.9b27.7±1.2a2.2±0.1a6.9±0.4b12.9±0.7a
MR339.9±3.2a26.5±1.4a2.3±0.1a7.1±0.4a12.1±0.6a
表2  复合钝化剂施用水平对土壤理化性质的影响
图1  复合钝化剂不同施用水平下土壤有效态Cd含量(A)和水稻吸Cd量(B)短栅上不同小写字母表示不同处理间土壤有效态Cd含量(A)或水稻同一部位Cd含量(B)在P<0.05水平差异有统计学意义。

处理

Treatment

转运系数

TF

籽粒生物富集系数

Grain BCF

CK0.7±0.02a0.3±0.09a
LM0.5±0.08c0.1±0.02c
MR10.6±0.10b0.2±0.03b
MR20.5±0.11c0.1±0.02c
MR30.4±0.08d0.1±0.01c
表3  复合钝化剂不同施用水平下水稻Cd转运系数和籽粒生物富集系数

处理

Treatment

细菌

Bacteria

真菌

Fungi

放线菌

Actinomycetes

革兰氏阳性菌

Gram-positive bacteria (G+)

革兰氏阴性菌

Gram-negative bacteria (G)

总微生物量

Total microbial biomass

CK95.6±5.3a6.8±0.4a42.6±1.5a43.3±1.5bc85.4±2.9a379.8±12.4b
LM77.0±1.9b5.0±0.8c37.8±1.1ab40.3±1.0c80.8±2.4a370.1±8.1c
MR193.6±11.4a6.8±0.1a40.2±0.9a44.4±1.2bc83.7±2.6a380.9±11.1b
MR2110.6±1.5a6.6±1.3a34.9±4.1b47.5±0.8b88.5±8.4a382.1±9.7ab
MR398.0±9.5a6.0±0.4b40.9±3.7a56.5±4.2a83.2±5.5a390.8±13.0a
表4  复合钝化剂不同施用水平下土壤微生物群落变化 (nmol/g)
图2  复合钝化剂不同施用水平下土壤PLFAs的主成分分析(A)、聚类分析(B)、香农-维纳多样性指数分析(C)和冗余分析(D)Bac:细菌;Act:放线菌;Fun:真菌;TB:总微生物量;AP:有效磷;OM:有机质;Av-Cd:有效态镉;H′:香农-维纳多样性指数;S/M:饱和PLFAs/不饱和PLFAs;i/a:异PLFAs/反异PLFAs。短栅上相同小写字母表示在P<0.05水平差异无统计学意义。
1 BLAKE L, GOULDING K W T. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK[J]. Plant and Soil, 2002, 240(2): 235-251. DOI:10.1023/A:1015731530498
doi: 10.1023/A:1015731530498
2 YANG S H, QU Y J, MA J, et al. Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta, China[J]. Environment Pollution, 2020, 264: 114688. DOI:10.1016/j.envpol.2020.114688
doi: 10.1016/j.envpol.2020.114688
3 王娜,魏样.土壤重金属镉污染来源及其修复技术探究[J].环境与发展,2019,157(8):65-66, 68. DOI:10.16647/j.cnki.cn15-1369/X.2019.08.031
WANG N, WEI Y. Study on sources of heavy metal cadmium pollution in soil and its remediation technology[J]. Environment and Development, 2019, 157(8): 65-66, 68. (in Chinese with English abstract)
doi: 10.16647/j.cnki.cn15-1369/X.2019.08.031
4 冯永杰.重金属污染土壤修复技术研究的现状与展望[J].环境与发展,2020(4):‍77-78. DOI:‍10.16647/j.cnki.cn15-1369/X.2020.04.042
FENG Y J. Status and prospects of research on heavy metal contaminated soil remediation technology[J]. Environment and Development, 2020(4): 77-78. (in Chinese with English abstract)
doi: ?10.16647/j.cnki.cn15-1369/X.2020.04.042
5 胡艳美,王旭军,党秀丽.改良剂对农田土壤重金属镉修复的研究进展[J].江苏农业科学,2020,48(6):17-23. DOI:10.15889/j.issn.1002-1302.2020.06.004
HU Y M, WANG X J, DANG X L. Research progress on remediation of heavy metal cadmium in farmland soil with amendments[J]. Jiangsu Agricultural Sciences, 2020, 48(6): 17-23. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2020.06.004
6 李佳华,林仁漳,王世和,等.几种固定剂对镉污染土壤的原位化学固定修复效果[J].生态环境,2008,17(6):2271-2275.
LI J H, LIN R Z, WANG S H, et al. Research on six amendments for in-situ chemo-immobilization of Cd contaminated soils[J]. Ecology and Environment, 2008, 17(6): 2271-2275. (in Chinese with English abstract)
7 李红娟,赵勇,王谦,等.不同改良剂对叶用莴苣吸收Cd的影响[J].农业工程学报,2010,26():285-291. DOI:10.3969/j.issn.1002-6819.2010.z1.051
LI H J, ZHAO Y, WANG Q, et al. Effects of different modifiers on Cd pollution of lettuce[J]. Transactions of the CSAE, 2010, 26(): 285-291. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.z1.051
8 丁永祯,宋正国,唐世荣,等.大田条件下不同钝化剂对空心菜吸收镉的影响及机理[J].生态环境学报,2011,20(11):1758-1763. DOI:10.3969/j.issn.1674-5906.2011.11.030
DING Y Q, SONG Z G, TANG S R, et al. Mechanism and effects of different amendments on cadmium uptake by water spinach (Ipomoea aquatica Forsk.) in field condition[J]. Ecology and Environmental Sciences, 2011, 20(11): 1758-1763. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5906.2011.11.030
9 王艳红,李盟军,唐明灯,等.石灰和泥炭配施对叶菜吸收Cd的阻控效应[J].农业环境科学学报,2013,32(12):2339-2344. DOI:10.11654/jaes.2013.12.005
WANG Y H, LI M J, TANG M D, et al. Combined application of lime and peat reduced cadmium uptake by leafy vegetables[J]. Journal of Agro-Environment Science, 2013, 32(12): 2339-2344. (in Chinese with English abstract)
doi: 10.11654/jaes.2013.12.005
10 杨兰,李冰,王昌全,等.牛粪配合无机改良剂对稻田土壤Cd赋存形态及生物有效性的影响[J].生态与农村环境学报,2016,32(4):651-658. DOI:10.11934/j.issn.1673-4831.2016.04.021
YANG L, LI B, WANG C Q, et al. Effect of decomposed cattle dung coupled with inorganic soil ameliorants on speciation and bioavailability of cadmium in paddy soil[J]. Journal of Ecology and Rural Environment, 2016, 32(4): 651-658. (in Chinese with English abstract)
doi: 10.11934/j.issn.1673-4831.2016.04.021
11 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
LU R K. Analytical Methods of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science Press, 1999. (in Chinese)
12 BUTLER J L, WILLIAMS M A, BOTTOMLEY P J, et al. Microbial community dynamics associated with rhizosphere carbon flow[J]. Applied and Environmental Microbiology, 2003, 69(11): 6793-6800. DOI:10.1128/aem.69.11.6793-6800.2003
doi: 10.1128/aem.69.11.6793-6800.2003
13 WU Y, MA B, ZHOU L, et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis[J]. Scientific Reports, 2009, 43(2/3): 234-240. DOI:10.1016/j.apsoil.2009.08.002
doi: 10.1016/j.apsoil.2009.08.002
14 WANG P, WANG H Z, WU L S, et al. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil[J]. Environment Pollution, 2012, 161: 121-127. DOI:10.1016/j.envpol.2011.09.038
doi: 10.1016/j.envpol.2011.09.038
15 ELLIS R J, NEISH B, TRETT M W, et al. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination[J]. Journal of Microbiological Methods, 2001, 45(3): 171-185. DOI:10.1016/s0167-7012(01)00245-7
doi: 10.1016/s0167-7012(01)00245-7
16 BOSSIO D A, SCOW K M, GUNAPALA N, et al. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microbial Ecology, 1998, 36(1): 1-12. DOI:10.1007/s002489900087
doi: 10.1007/s002489900087
17 邹富桢,龙新宪,余光伟,等.复合钝化剂钝化修复酸性多金属污染土壤的效应:基于重金属形态和植物有效性的评价[J].农业环境科学学报,2017,36(9):1787-1795. DOI:10.11654/jaes.2016-1660
ZOU F Z, LONG X X, YU G W, et al. In-situ remediation of a multi-metal contaminated acid soil using organic-inorganic mixed amendments: evaluation by heavy metal fractions and phytoavailability[J]. Journal of Agro-Environment Science, 2017, 36(9): 1787-1795. (in Chinese with English abstract)
doi: 10.11654/jaes.2016-1660
18 罗远恒,顾雪元,吴永贵,等.钝化剂对农田土壤镉污染的原位钝化修复效应研究[J].农业环境科学学报,2014,33(5):890-897. DOI:10.11654/jaes.2014.05.010
LUO Y H, GU X Y, WU Y G, et al. In-situ remediation of cadmium-polluted agriculture land using stabilizing amendments[J]. Journal of Agro-Environment Science, 2014, 33(5): 890-897. (in Chinese with English abstract)
doi: 10.11654/jaes.2014.05.010
19 王美,李书田.肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J].植物营养与肥料学报,2014,20(2):466-480. DOI:10.11674/zwyf.2014.0224
WANG M, LI S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 466-480. (in Chinese with English abstract)
doi: 10.11674/zwyf.2014.0224
20 瞿飞,范成五,刘桂华,等.钝化剂修复重金属污染土壤研究进展[J].山西农业科学,2017,45(9):1561-1565. DOI:10.3969/j.issn.1002-2481.2017.09.39
QU F, FAN C W, LIU G H, et al. Research progress on remediation of heavy metal contaminated soils with different kinds of passivation agents[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(9): 1561-1565. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2017.09.39
21 陈远其,张煜,陈国梁.石灰对土壤重金属污染修复研究进展[J].生态环境学报,2016,25(8):1419-1424. DOI:10.16258/j.cnki.1674-5906.2016.08.025
CHEN Y Q, ZHANG Y, CHEN G L. Remediation of heavy metal contaminated soils by lime: a review[J]. Ecology and Environmental Sciences, 2016, 25(8): 1419-1424. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2016.08.025
22 张迪,胡学玉,柯跃进,等.生物炭对城郊农业土壤镉有效性及镉形态的影响[J].环境科学与技术,2016,39(4):88-94. DOI:10.3969/j.issn.1003-6504.2016.04.018
ZHANG D, HU X Y, KE Y J, et al. Effects of biochar on availability and speciation of cadmium (Ⅱ) in suburb agricultural soil[J]. Environmental Science and Technology, 2016, 39(4): 88-94. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-6504.2016.04.018
23 颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851-859. DOI:10.11766/trxb200510310521
YAN H, CAI Z C, ZHONG W H. PLFA analysis and its applications in the study of soil microbial diversity[J]. Acta Pedologica Sinica, 2006, 43(5): 851-859. (in Chinese with English abstract)
doi: 10.11766/trxb200510310521
24 YAO Z Y, XING J J, GU H P, et al. Development of microbial community structure in vegetable-growing soils from open-field to plastic-greenhouse cultivation based on the PLFA analysis[J]. Journal of Soils and Sediments, 2016, 16(8): 2041-2049. DOI:10.1007/s11368-016-1397-2
doi: 10.1007/s11368-016-1397-2
25 陈振翔,于鑫,夏明芳,等.磷脂脂肪酸分析方法在微生物生态学中的应用[J].生态学杂志,2005,24(7):828-832. DOI:10.3321/j.issn:1000-4890.2005.07.022
CHEN Z X, YU X, XIA M F, et al. Application of phospholipid fatty acid (PLFA) analysis in microbial ecology[J]. Chinese Journal of Ecology, 2005, 24(7): 828-832. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4890.2005.07.022
26 FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626-631. DOI:10.1073/pnas.0507535103
doi: 10.1073/pnas.0507535103
27 YAO H Y, JIAO X D, WU F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity[J]. Plant and Soil, 2006, 284(1/2): 195-203. DOI:10.1007/s11104-006-0023-2
doi: 10.1007/s11104-006-0023-2
28 SHANGGUAN Y X, QIN Y S, YU H, et al. Lime application affects soil cadmium availability and microbial community composition in different soils[J]. CLEAN—Soil Air Water, 2019, 47(6): 1800416. DOI:10.1002/clen.201800416
doi: 10.1002/clen.201800416
29 DUPONNOIS R, PAUGY M, THIOULOUS J, et al. Functional diversity of soil microbial community, rock phosphate dissolution and growth of Acacia seyal as influenced by grass-litter and soil-feeding termite nest structure amendments[J]. Geoderma, 2005, 124(3/4): 349-361. DOI:10.1016/j.geoderma.2004.05.012
doi: 10.1016/j.geoderma.2004.05.012
30 ROONEY D C, CLIPSON N J W. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil[J]. Microbial Ecology, 2009, 57(1): 4-13. DOI:10.1007/s00248-008-9399-2
doi: 10.1007/s00248-008-9399-2
[1] 谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.
[2] 吴伊鑫,黄奇伟,叶木军,梁永超,彭红云. 农药减施条件下追施硅肥对水稻抗逆性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 507-516.
[3] 李宏宇,李坤,杨知. 基于时间序列全极化合成孔径雷达的水稻物候期反演[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 404-414.
[4] 刘钰莹,张妍,汪哲远,李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223-232.
[5] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[6] 怀燕,陈照明,张耿苗,姜铭北,许剑锋,王强. 水稻侧深施肥技术的氮肥减施效应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 217-224.
[7] 王昂,戴丹超,马旭洲,牟群,于永清,吕为群. 北方稻蟹共作对水体氮素淋溶损失的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 332-342.
[8] 尹华锋, 苏程, 冯存均, 李玉琴, 黄智才, 章孝灿. 基于样本知识挖掘的高分辨率遥感图像水稻种植信息提取方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 765-774.
[9] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.
[10] 张志昌, 潘伟槐, 严旭, 尹守鹏, 程祝宽, 潘建伟. 水稻根系生长素抗性突变体的筛选及表型鉴定[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 311-317.
[11] 蒲石林,邓飞,胡慧,钟晓媛,王丽,李武,李书先,廖爽,任万军. 杂交稻不同机插穴距及苗数配置对干物质生产与产量的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 21-30.
[12] 王永维,何焯亮,陈军,王俊,张羚玥,唐燕海. 碰撞气吹式杂交水稻授粉机结构与参数优化[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 98-106.
[13] 何明江,沈浩然,查婷, 于雄胜,刘杏梅. 水稻土中痕量多环芳烃的分析测定方法[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 766-774.
[14] 胡春琴,李睿,洪春来,曹雯婷,刘嘉伟,周骏,翁焕新. 海藻碘肥对田园水稻、蔬菜及水果碘含量的强化效果[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 552-560.
[15] 代邹,余华清,郭长春,马均,李娜,杨志远,徐徽,孙永健. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.