Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 507-516    DOI: 10.3785/j.issn.1008-9209.2020.10.161
资源利用与环境保护     
农药减施条件下追施硅肥对水稻抗逆性及产量的影响
吴伊鑫(),黄奇伟,叶木军,梁永超,彭红云()
浙江大学环境与资源学院,教育部污染环境修复与生态健康重点实验室,杭州 310058
Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application
Yixin WU(),Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG()
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(910 KB)   HTML
摘要:

以‘浙优21’水稻品种为材料进行田间试验,设置正常施药(375 g/hm2 75%三环唑可湿性粉剂,D1)和减药(225 g/hm2 75%三环唑可湿性粉剂,D2)2种施药水平,每种施药水平含追施硅肥(750 kg/hm2,+Si)组和不追施硅肥(-Si)组,共4个处理组,研究在这2种施药水平下追施硅肥对水稻抗逆性及产量的影响。结果表明:在正常施药水平(D1)下,相较于不追施硅肥,追施硅肥的水稻基部第2节抗折力增大26.71%,倒伏指数降低13.29%,水稻穗颈瘟发病率降低15.37%,病情指数降低19.09%,水稻产量提高3.33%(P<0.05);在减药水平(D2)下,相较于不追施硅肥,追施硅肥的水稻基部第2节抗折力增大33.67%,倒伏指数降低14.04%,水稻穗颈瘟发病率降低28.98%,病情指数降低23.11%,水稻产量提高11.44%(P<0.05)。由此说明,在农药减施条件下,追施硅肥能降低水稻的倒伏指数和水稻穗颈瘟病情指数,增强水稻抗倒伏能力和抗水稻穗颈瘟能力,提高水稻产量。在不施硅肥情况下,减药使水稻减产;而在施硅肥情况下,减药与否对水稻产量无显著影响。

关键词: 硅肥农药减施倒伏指数水稻穗颈瘟产量    
Abstract:

A field experiment was carried out on ‘Zheyou 21’ rice cultivar, and the effects of topdressing of silicon (Si) fertilizer on stress resistance and yield of rice were studied at two levels of pesticide application. The normal level of pesticide application (375 g/hm2 75% tricyclazole wettable powder, D1) and the reduced level of pesticide application (225 g/hm2 75% tricyclazole wettable powder, D2) were set up. Each level of pesticide application contained two Si fertilizer treatments, including non-topdressing of Si fertilizer (-Si) and topdressing of Si powder fertilizer (750 kg/hm2, +Si). The results showed that compared with -Si, the +Si increased the breaking resistance of the second stem by 26.71%, and reduced the lodging index by 13.29%, incidence of rice ear neck blast by 15.37%, disease index by 19.09%, and increased yield by 3.33% (P<0.05) of rice under the treatment of D1. Compared with -Si, the +Si increased the breaking resistance of the second stem by 33.67%, and reduced lodging index by 14.04%, incidence of rice ear neck blast by 28.98%, disease index by 23.11%, and increased yield by 11.44% (P<0.05) of rice under the treatment of D2. In conclusion, topdressing of Si fertilizer could reduce lodging index and disease index of rice ear neck blast, leading to enhance lodging resistance and disease resistance to rice ear neck blast, and increase rice yield under the reduced level of pesticide application. In the case of no Si topdressing, rice yield was reduced due to the reduction in pesticide application, while in the case of Si topdressing, there is no significant effect on rice yield.

Key words: silicon fertilizer    pesticide reduction    lodging index    rice ear neck blast    yield
收稿日期: 2020-10-16 出版日期: 2021-09-02
CLC:  S 143.79  
基金资助: 浙江省重点研发计划(2018C02036)
通讯作者: 彭红云     E-mail: Yixwu@zju.edu.cn;penghongyun@zju.edu.cn
作者简介: 吴伊鑫(https://orcid.org/0000-0001-9190-0095),E-mail:Yixwu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴伊鑫
黄奇伟
叶木军
梁永超
彭红云

引用本文:

吴伊鑫,黄奇伟,叶木军,梁永超,彭红云. 农药减施条件下追施硅肥对水稻抗逆性及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 507-516.

Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.10.161        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/507

处理

Treatment

基肥

Base fertilizer/(kg/hm2)

追肥

Topdressing/(kg/hm2)

施药

Pesticide application/(g/hm2)

拔节期

Elongation stage

孕穗期

Booting stage

齐穗期

Full heading stage

D1-Si750075150150
+Si75075075150150
D2-Si7500751500
+Si750750751500
表1  各处理组的施肥和施药方式
图1  追施硅肥对水稻株高、基部第2节茎基宽和茎壁厚的影响各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在同一施药水平下在P<0.05水平差异有统计学意义。
图2  追施硅肥对水稻基部第2节抗折力和倒伏指数的影响各处理符号表示的含义详见表1注。短栅上的不同小写字母表示在P<0.05水平差异有统计学意义。

处理

Treatment

发病率

Incidence/%

病情指数

Disease index

防治效果

Control effect/%

D1-Si19.72±0.08b12.26±0.06b0.00
+Si16.69±0.10c9.92±0.21d19.11
D2-Si23.26±0.25a13.89±0.06a-13.29
+Si16.52±0.04c10.68±0.13c12.88
表2  各处理下水稻穗颈瘟发病情况

处理

Treatment

有效穗数

Effective

panicle/(104 hm-2)

每穗粒数

Grain number

per panicle

每穗实粒数

Filled grain

number per panicle

结实率

Seed setting

rate/%

千粒质量

1 000-grain

mass/g

理论产量

Theoretical yield/

(kg/hm2)

实际产量

Actual yield/

(kg/hm2)

D1-Si194.70±1.65b285.83±1.59b247.47±1.51b86.58±0.05b23.25±0.02b11 202.15±167.21b12 196.65±126.66b
+Si209.71±1.14a300.02±2.85a261.20±2.45a87.06±0.01a23.37±0.01a12 798.99±112.57a12 602.30±98.77a
D2-Si185.97±1.72c277.99±1.40c236.76±1.20c85.17±0.19c23.24±0.01b10 229.92±51.92c11 299.20±79.04c
+Si206.95±0.64a297.87±0.80a258.85±0.65a86.90±0.03ab23.35±0.01a12 506.51±57.46a12 591.65±70.96a
表3  各处理下水稻产量及其构成

处理

Treatment

总氮 Total N总磷 Total P总钾 Total KSi
秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed
D1-Si7.97±0.08a14.88±0.04b1.41±0.04b2.79±0.02b34.08±0.50a4.22±0.12a76.80±0.08b34.80±0.15b
+Si7.60±0.05b15.73±0.37a1.60±0.04a3.16±0.04a31.87±0.70a4.37±0.12a86.94±0.45a41.29±0.04a
D2-Si7.92±0.07a14.82±0.03b1.43±0.01b2.81±0.02b33.55±0.69a4.36±0.10a77.71±0.33b35.06±0.19b
+Si7.68±0.06b15.89±0.14a1.58±0.01a3.09±0.02a32.07±0.82a4.46±0.15a87.13±0.39a41.19±0.09a
表4  各处理下水稻秸秆和籽粒中的元素含量 (g/kg)

参量

Parameter

产量

Yield

病情指数Disease

index

倒伏指数Lodging

index

株高

Plant

height

茎基宽

Stem

base width

茎壁厚Stem wall

thickness

秸秆 Straw籽粒 Seed

总氮

Total N

总磷

Total P

总钾

Total K

Si

总氮

Total N

总磷

Total P

总钾

Total K

Si
产量 Yield1
病情指数 Disease index-0.934**1
倒伏指数 Lodging index-0.825**0.940**1
株高 Plant height0.254-0.417-0.4631
茎基宽 Stem base width0.848**-0.902**-0.881**0.2511
茎壁厚 Stem wall thickness0.803**-0.929**-0.959**0.5440.783**1
秸秆Straw总氮 Total N-0.590*0.722**0.823**-0.237-0.710**-0.783**1
总磷 Total P0.680*-0.833**-0.875**0.623*0.684*0.889**-0.650*1
总钾 Total K-0.5230.610*0.702*-0.446-0.337-0.735**0.564-0.706*1
Si0.740**-0.871**-0.970**0.4190.831**0.918**-0.821**0.912**-0.704*1
籽粒Seed总氮 Total N0.664*-0.771**-0.811**0.2580.797**0.777**-0.719**0.724**-0.5020.825**1
总磷 Total P0.713**-0.867**-0.958**0.3790.785**0.914**-0.878**0.867**-0.741**0.969**0.750**1
总钾 Total K-0.016-0.159-0.2600.3710.1660.381-0.2650.2550.0380.2750.3960.2321
Si0.760**-0.893**-0.983**0.4200.850**0.944**-0.819**0.894**-0.701*0.992**0.853**0.961**0.3211
表5  水稻病情指数、倒伏指数、茎秆形态、养分含量与水稻产量的相关性分析
1 XIAO S Z, WANG B X, LIU Y Q, et al. Genome-wide association study and linkage analysis on resistance to rice black-streaked dwarf virus disease. Molecular Breeding, 2019,39:73. DOI:10.1007/s11032-019-0980-9
doi: 10.1007/s11032-019-0980-9
2 LUO Y C, MA T C, ZHANG A F, et al. Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Molecular Breeding, 2017,37:106. DOI:10.1007/s11032-017-0695-8
doi: 10.1007/s11032-017-0695-8
3 GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology, 2018,19(9):2149-2161. DOI:10.1111/mpp.12689
doi: 10.1111/mpp.12689
4 SAVARY S, WILLOCQUET L, ELAZEGUI F A, et al. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 2000,84(3):357-369. DOI:10.1094/pdis.2000.84.3.357
doi: 10.1094/pdis.2000.84.3.357
5 VAEZI A, FAKHIM H, JAVIDNIA J, et al. Pesticide behavior in paddy fields and development of azole-resistant Aspergillus fumigatus: Should we be concerned?Journal de Mycologie Médicale, 2018,28(1):59-64. DOI:10.1016/j.mycmed.2017.12.007
doi: 10.1016/j.mycmed.2017.12.007
6 MOUHAMADOU C S, DE SOUZA S S, FODJO B K, et al. Evidence of insecticide resistance selection in wild Anopheles coluzzii mosquitoes due to agricultural pesticide use. Infectious Diseases of Poverty, 2019,8(1):64. DOI:10.1186/s40249-019-0572-2
doi: 10.1186/s40249-019-0572-2
7 LI Z J. Evaluation of regulatory variation and theoretical health risk for pesticide maximum residue limits in food. Journal of Environmental Management, 2018,219:153-167. DOI:10.1016/j.jenvman.2018.04.067
doi: 10.1016/j.jenvman.2018.04.067
8 KUMARI D, JOHN S. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere, 2019,224:162-167. DOI:10.1016/j.chemosphere.2019.02.091
doi: 10.1016/j.chemosphere.2019.02.091
9 Silicon EPSTEIN E.. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50:641-664.
10 MA J F, Soil TAKAHASHI E., Fertilizer, and Plant Silicon Research in Japan. Amsterdam, the Netherlands: Elsevier Science, 2002:257-274. DOI:10.1016/B978-0-444-51166-9.X5000-3
doi: 10.1016/B978-0-444-51166-9.X5000-3
11 LIANG Y C, NIKOLIC M, BéLANGER R, et al. Effect of silicon on crop growth, yield and quality//Silicon in Agriculture. Dordrecht, the Netherlands: Springer, 2015:209-223. DOI:10.1007/978-94-017-9978-2_11
doi: 10.1007/978-94-017-9978-2_11
12 SAVANT N K, SNYDER G H, DATNOFF L E. Silicon management and sustainable rice production. Advances in Agronomy, 1996,58:151-199. DOI:10.1016/S0065-2113(08)60255-2
doi: 10.1016/S0065-2113(08)60255-2
13 MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006,11(8):392-397. DOI:10.1016/j.tplants.2006.06.007
doi: 10.1016/j.tplants.2006.06.007
14 SEEBOLD K W, DATNOFF L E, CORREA-VICTORIA F J, et al. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease, 2000,84(8):871-876. DOI:10.1094/pdis.2000.84.8.871
doi: 10.1094/pdis.2000.84.8.871
15 SEEBOLD K W, KUCHAREK T A, DATNOFF L E, et al. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 2001,91(1):63-69. DOI:10.1094/PHYTO.2001.91.1.63
doi: 10.1094/PHYTO.2001.91.1.63
16 HAYASAKA T, FUJII H, NAMAI T. Silicon content in rice seedlings to protect rice fungus at the nursery stage. Journal of General Plant Pathology, 2005,71(3):169-173. DOI:10.1007/s10327-005-0182-7
doi: 10
17 RODRIGUES F á, DATNOFF L E, KORND?RFER G H, et al. Effect of silicon and host resistance on sheath blight development in rice. Plant Disease, 2001,85(8):827-832. DOI:10.1094/pdis.2001.85.8.827
doi: 10.1094/pdis.2001.85.8.827
18 RODRIGUES F á, VALE F X R, KORND?RFER G H, et al. Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 2003,22(1):23-29. DOI:10.1016/S0261-2194(02)00084-4
doi: 10.1016/S0261-2194(02)00084-4
19 RANGANATHAN S, SUVARCHALA V, RAJESH Y B R D, et al. Effect of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 2006,50(4):713-716. DOI:10.1007/s10535-006-0113-2
doi: 10.1007/s10535-006-0113-2
20 刘红芳,宋阿琳,范分良,等.高供氮水平下不同硅肥对水稻茎秆特征的影响.植物营养与肥料学报,2018,24(3):758-768. DOI:10.11674/zwyf.17485
LIU H F, SONG A L, FAN F L, et al. Characteristics of rice stem in response to different silicon fertilizers under high nitrogen supply level. Plant Nutrition and Fertilizer Science, 2018,24(3):758-768. (in Chinese with English abstract)
doi: 10.11674/zwyf.17485
21 陈刚,罗志祥,施伏芝,等.一种新型硅肥在两系杂交水稻上的增产效果研究.中国土壤与肥料,2016(2):109-113. DOI:10.11838/sfsc.20160220
CHEN G, LUO Z X, SHI F Z, et al. Effect of a new type silicon fertilizer application on yield of two-lines hybrid rice. Soil and Fertilizer Sciences in China, 2016(2):109-113. (in Chinese with English abstract)
doi: 10.11838/sfsc.20160220
22 崛内久满,古贺义昭.水稻抗倒伏性与育种.农业技术,1989,44(9):41-45.
JUENEIJIUMAN, GUHEYIZHAO. Lodging resistance of rice and breeding. Agricultural Technology, 1989,44(9):41-45. (in Chinese)
23 中华人民共和国农业部.稻瘟病测报调查规范:GB/T 15790—2009.北京:中国标准出版社,2009.
Ministry of Agriculture of the People’s Republic of China. Rules for Investigation and Forecast of the Rice Blast [Pyricularia oryzae (Cavara)]: GB/T 15790—2009. Beijing: Standards Press of China, 2009. (in Chinese)
24 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
LU R K. Soil and Agricultural Chemistry Analysis Method. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
25 戴伟民,张克勤,段彬伍,等.测定水稻硅含量的一种简易方法.中国水稻科学,2005,19(5):460-462.
DAI W M, ZHANG K Q, DUAN B W, et al. Rapid determination of silicon content in rice (Oryza sativa). Chinese Journal of Rice Science, 2005,19(5):460-462. (in Chinese with English abstract)
26 张晶,石扬娟,任洁,等.硅肥用量对水稻茎秆抗折力的影响研究.中国农学通报,2014,30(3):49-55.
ZHANG J, SHI Y J, REN J, et al. The effect of silicon fertilizer on flexural strength of rice culm. Chinese Agricultural Science Bulletin, 2014,30(3):49-55. (in Chinese with English abstract)
27 范永义,杨国涛,陈敬,等.硅钾肥配施对水稻茎秆理化性状及抗倒伏能力的影响.西北植物学报,2017,37(4):751-757. DOI:10.7606/j.issn.1000-4025.2017.04.0751
FAN Y Y, YANG G T, CHEN J, et al. The physical, chemical characters and lodging resistance of rice stem with silicon potassium collocation application. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(4):751-757. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2017.04.0751
28 梁社坚,李增奇,李晓娟,等.水稻茎秆性状和硅含量对抗压强度的影响//广东省植物学会2010学术研讨会论文集.广州:广东省植物学会,2010.
LIANG S J, LI Z Q, LI X J, et al. Effects of stem structural characters and silicon contents on bending strength in rice//Proceedings of the 2010 Symposium of Guangdong Society of Botany. Guangzhou: Guangdong Society of Botany, 2010. (in Chinese with English abstract)
29 何巧林,张绍文,李应洪,等.硅钾配施对水稻茎秆性状和抗倒伏能力的影响.杂交水稻,2017,32(1):66-73. DOI:10.16267/j.cnki.1005-3956.201701019
HE Q L, ZHANG S W, LI Y H, et al. Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice. Hybrid Rice, 2017,32(1):66-73. (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201701019
30 关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.吉林农业科学,2004,29(4):6-11. DOI:10.3969/j.issn.1003-8701.2004.04.002
GUAN Y P, SHEN F. Effect of lodging resistance on yield of rice and its relationship with stalk physical characteristics. Journal of Jilin Agricultural Sciences, 2004,29(4):6-11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-8701.2004.04.002
31 李荣田,姜廷波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,1996(1):13-17.
LI R T, JIANG T B, QIU T Q, et al. Study on effect of lodging to yield and relationship between lodging and plant height in rice. Heilongjiang Agricultural Sciences, 1996(1):13-17. (in Chinese with English abstract)
32 李国辉,钟旭华,田卡,等.施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理.中国农业科学,2013,46(7):1323-1334. DOI:10.3864/j.issn.0578-1752.2013.07.003
LI G H, ZHONG X H, TIAN K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Scientia Agri-cultura Sinica, 2013,46(7):1323-1334. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.07.003
33 杨艳华,朱镇,张亚东,等.水稻不同生育期茎秆生化成分的变化及其与抗倒伏能力的关系.植物生理学报,2011,47(12):1181-1187.
YANG Y H, ZHU Z, ZHANG Y D, et al. Changes of stem biochemical components in different growth stages of rice and their relationship with lodging resistance. Plant Physiology Journal, 2011,47(12):1181-1187. (in Chinese with English abstract)
34 水茂兴,杜新法,陈德富,等.高效硅肥对水稻抗稻瘟病效果分析.浙江农业学报,1995,7(4):289-292.
SHUI M X, DU X F, CHEN D F, et al. Effect of soluble silicon fertilizer on rice resistance to blast. Acta Agriculturae Zhejiangensis, 1995,7(4):289-292. (in Chinese with English abstract)
35 雷雨,黄云,杜哓宇,等.增施硅肥对水稻抗稻瘟病的效果分析.安徽农业科学,2009,37(23):11044-11046. DOI:10.3969/j.issn.0517-6611.2009.23.093
LEI Y, HUANG Y, DU X Y, et al. Effect analysis of adding silicon fertilizer on the resistance of rice to rice blast. Journal of Anhui Agricultural Sciences, 2009,37(23):11044-11046. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2009.23.093
36 赖添奎,邓裕娴,葛少彬,等.施用硅肥对水稻稻瘟病、生长及产量的影响.热带农业工程,2012,36(2):6-8.
LAI T K, DENG Y X, GE S B, et al. Effects of silicon fertilizer on rice blast control, rice growth and yield. Tropical Agricultural Engineering, 2012,36(2):6-8. (in Chinese with English abstract)
37 张佑宏,张国斌,王治虎,等.施用硅肥锌肥作基肥对稻瘟病发生的影响.中国农学通报,2018,34(8):90-94. DOI:10.11924/j.issn.1000-6850.casb17090039
ZHANG Y H, ZHANG G B, WANG Z H, et al. Silicon fertilizer and zinc fertilizer as base fertilizer: effect on Magnaporthe oryzae. Chinese Agricultural Science Bulletin, 2018,34(8):90-94. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb17090039
38 NANDA H P, GANGOPADHYAY S. Role of silicated cells in rice leaf on brown spot disease incidence by Bipolaris oryzae. International Journal of Tropical Plant Diseases, 1984,2(2):89-98.
39 HAYASAKA T, FUJII H, ISHIGURO K. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology, 2008,98(9):1038-1044. DOI:10.1094/PHYTO-98-9-1038
doi: 10.1094/PHYTO-98-9-1038
40 SUN W C, ZHANG J, FAN Q H, et al. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. European Journal of Plant Pathology, 2010,128(1):39-49. DOI:10.1007/s10658-010-9625-x
doi: 10.1007/s10658-010-9625-x
41 RODRIGUES F A, JURICK W M, DATNOFF L E, et al. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005,66(4):144-159. DOI: 10.1016/j.pmpp.2005.06.002
doi: 10.1016/j.pmpp.2005.06.002
42 BRUNINGS A M, DATNOFF L E, MA J F, et al. Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Annals of Applied Biology, 2009,155(2):161-170. DOI:10.1111/j.1744-7348.2009.00347.x
doi: 10.1111/j.1744-7348.2009.00347.x
43 张翠珍,邵长泉,孟凯,等.水稻吸硅特点及硅肥效应研究.莱阳农学院学报,2003,20(2):111-113. DOI:10.3969/j.issn.1674-148X.2003.02.011
ZHANG C Z, SHAO C Q, MENG K, et al. Study on rice absorbing silicon characteristics and silica fertilizer effect under salinized moist in coastal regions. Journal of Laiyang Agricultural College, 2003,20(2):111-113. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-148X.2003.02.011
44 吴巍,张宽,王秀芳,等.硅肥对水稻养分吸收及产量的影响.吉林农业科学,1996(3):51-54.
WU W, ZHANG K, WANG X F, et al. A study of silicon fertilizer on nutrient uptake and yield in rice. Journal of Jilin Agricultural Sciences, 1996(3):51-54. (in Chinese with English abstract)
45 唐旭,郑毅,汤利,等.不同品种间作条件下的氮硅营养对水稻稻瘟病发生的影响.中国水稻科学,2006,20(6):663-666.
TANG X, ZHENG Y, TANG L, et al. Effects of nitrogen and silicon nutrition on rice blast occurrence under intercropping with different type varieties. Chinese Journal of Rice Science, 2006,20(6):663-666. (in Chinese with English abstract)
46 INANAGA S, HIGUCHI Y, CHISHAKI N. Effect of silicon application on reproductive growth of rice plant. Soil Science and Plant Nutrition, 2002,48(3):341-345. DOI:10.1080/00380768.2002.10409210
doi: 10.1080/0038
47 胡瑞芝,方水娇,陈桂秋.硅对杂交水稻生理指标及产量的影响.湖南农业大学学报(自然科学版),2001,27(5):335-338.
HU R Z, FANG S J, CHEN G Q. Effects of silicon on the physiological targets and yield of hybrid rice. Journal of Hunan Agricultural University (Natural Sciences), 2001,27(5):335-338. (in Chinese with English abstract)
48 ALVAREZ J, DATNOFF L E. The economic potential of silicon for integrated management and sustainable rice production. Crop Protection, 2001,20(1):43-48. DOI:10.1016/s0261-2194(00)00051-x
doi: 10.1016/s0261-2194(00)00051-x
49 杨楠.硅肥对水稻产量构成因素的影响.现代化农业,2014(2):15-16.
YANG N. Effect of silicon fertilizer on yield components of rice. Modernizing Agriculture, 2014(2):15-16. (in Chinese)
50 李卫国.硅肥对水稻产量及其构成因素的影响.山西农业科学,2002,30(4):42-44. DOI:10.3969/j.issn.1002-2481.2002.04.009
LI W G. Effects of Si fertilization on rice yield and component factors. Journal of Shanxi Agricultural Sciences, 2002,30(4):42-44. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2002.04.009
[1] 王慧茹,闫思华,高艳明,李建设. 不同整枝方式对樱桃番茄果实商品性、营养品质及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 347-353.
[2] 白岗栓,杜社妮,苗庆丰. 抽穗期补充灌溉对河套灌区地膜春小麦生长的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 21-31.
[3] 侯福银,陈应江,杨智青,金崇富,时凯,陈长宽,封功能,李洪山. 猪粪沼液对籼稻农艺性状、产量和饲用品质的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 325-331.
[4] 白岗栓,耿伟,何登峰. 保水剂施用量对秦巴山区土壤特性及烤烟生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 343-354.
[5] 魏来,余明艳,覃楠楠,黄冲平,谢颖,孙文波,吴列洪,王伟忠,王国新. 农光耦合系统对田间光照条件和甘薯生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 288-295.
[6] 郭长春,张桥,孙永健,武云霞,徐徽,何艳,杨志远,马鹏,彭志芸,马均. 不同产量水平的杂交籼稻品种穴直播茎秆抗倒特性及其差异性比较[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 143-156.
[7] 陈心源,田忍国,沈林章,殷益明,朱利鑫,贾惠娟. 不同蓝红光比例发光二极管对火龙果花芽分化和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 14-22.
[8] 蒋静静, 常晓晓, 胡晓辉. 供氮水平对基质袋培黄瓜养分吸收分配和产量的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 678-686.
[9] 向洁, 王富强, 郭宝光, 王庆刚, 余成群, 沈振西, 邵小明. 西藏河谷区燕麦与箭筈豌豆混间作对产量和营养品质的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 555-564.
[10] 王桂跃, 赵福成, 韩海亮, 包斐, 谭禾平, 俞琦英. 浙江省鲜食玉米新品种产量、品质和抗性分析及其育种目标选择[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 343-355.
[11] 蒲石林,邓飞,胡慧,钟晓媛,王丽,李武,李书先,廖爽,任万军. 杂交稻不同机插穴距及苗数配置对干物质生产与产量的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 21-30.
[12] 庞婷,帅鹏,陈平,杜青,付智丹,杨文钰,雍太文. 不同结瘤品种和行间距对套作大豆根瘤生长及物质积累与分配的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 451-461.
[13] 魏常慧, 刘亚军, 冶秀香, 李越, 马琨. 马铃薯/玉米间作栽培对土壤和作物的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 54-64.
[14] 周旋,丁俊山,吴良欢,陆若辉,杨国标,王旭. 不同工艺复合肥对小白菜产量和品质的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 626-.
[15] 李敏, 罗德强, 江学海, 周维佳, 姬广梅, 王学鸿, 李树杏. 低温寡日照条件下不同类型杂交稻品种的生态适应性[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 47-52.