|
|
基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估 |
谢鹏尧1,2(),富昊伟3,唐政1,2,麻志宏1,2,岑海燕1,2() |
1.浙江大学生物系统工程与食品科学学院,杭州 310058 2.农业农村部光谱检测重点实验室,杭州 310058 3.嘉兴市农业科学研究院,浙江 嘉兴 314016 |
|
RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale |
Pengyao XIE1,2(),Haowei FU3,Zheng TANG1,2,Zhihong MA1,2,Haiyan CEN1,2() |
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China 2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China 3.Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, Zhejiang, China |
引用本文:
谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.
Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
链接本文:
http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.05.131
或
http://www.zjujournals.com/agr/CN/Y2021/V47/I4/415
|
1 |
OERKE E C. Remote sensing of diseases. Annual Review of Phytopathology, 2020,58(1):225-252. DOI:10.1146/annurev-phyto-010820-012832
doi: 10.1146/annurev-phyto-010820-012832
|
2 |
RATH A K, MEHER J K. Disease detection in infected plant leaf by computational method. Archives of Phytopathology and Plant Protection, 2019,52(19/20):1348-1358. DOI:10.1080/03235408.2019.1708546
doi: 10.1080/03235408.2019.1708546
|
3 |
贺闽,尹俊杰,冯志明,等.水稻稻瘟病和纹枯病抗性鉴定方法.植物学报,2020,55(5):577-587. DOI:10.11983/CBB20100 HE M, YIN J J, FENG Z M, et al. Identification method of rice blast and sheath blight resistance. Chinese Bulletin of Botany, 2020,55(5):577-587. (in Chinese with English abstract)
doi: 10.11983/CBB20100
|
4 |
SENAN N, AAMIR M, IBRAHIM R, et al. An efficient convolutional neural network for paddy leaf disease and pest classification. International Journal of Advanced Computer Science and Applications, 2020,11(7):116-122. DOI:10.14569/IJACSA.2020.0110716
doi: 10.14569/IJACSA.2020.0110716
|
5 |
张凝,杨贵军,赵春江,等.作物病虫害高光谱遥感进展与展望.遥感学报,2021,25(1):403-422. DOI:10.118340rs.20210196 ZHANG N, YANG G J, ZHAO C J, et al. Progress and prospect of hyperspectral remote sensing of crop pests and diseases. National Remote Sensing Bulletin, 2021,25(1):403-422. (in Chinese with English abstract)
doi: 10.118340rs.20210196
|
6 |
GUCHAIT N, BHAKTA I, PHADIKAR S, et al. Visual computing for blast and brown spot disease detection in rice leaves//Proceedings of the 2nd International Conference on Communication, Devices and Computing. Singapore: Springer, 2020:595-606. DOI:10.1007/978-981-15-0829-5_56
doi: 10.1007/978-981-15-0829-5_56
|
7 |
BAKAR M N ABU, ABDULLAH A H, ABDUL RAHIM N, et al. Rice leaf blast disease detection using multi-level colour image thresholding. Journal of Telecommunication, Electronic and Computer Engineering, 2018,10:1-6.
|
8 |
PEYMAN S H, ZIARATGAHI A B, JAFARI A, et al. Exploring the possibility of using digital image processing technique to detect diseases of rice leaf. Journal of Agricultural Machinery, 2016,6(1):69-79. DOI:10.22067/jam.v6i1.32031
doi: 10.22067/jam.v6i1.32031
|
9 |
GAYATHRI DEVI T, NEELAMEGAM P. Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu. Cluster Computing, 2019,22:S13415-S13428. DOI:10.1007/s10586-018-1949-x
doi: 10.1007/s10586-018-1949-x
|
10 |
LARIJANI M R, ASLIARDEH E A, KOZEGAR E, et al. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means. Food Science & Nutrition, 2019,7(12):3922-3930. DOI:10.1002/fsn3.1251
doi: 10.1002/fsn3.1251
|
11 |
KANG J J, MA Y, XIAO M H, et al. Rice blast recognition based on image processing and BP neural network. International Agricultural Engineering Journal, 2018,27(1):250-256.
|
12 |
RAMESH S, VYDEKI D. Rice blast disease detection and classification using machine learning algorithm//2018 2nd International Conference on Micro-Electronics and Telecom-munication Engineering (ICMETE). New York, U.S.: IEEE, 2018:255-259. DOI:10.1109/ICMETE.2018.00063
doi: 10.1109/ICMETE.2018.00063
|
13 |
LIANG W J, ZHANG H, ZHANG G F, et al. Rice blast disease recognition using a deep convolutional neural network. Scientific Reports, 2019,9(1):2869. DOI:10.1038/s41598-019-38966-0
doi: 10.1038/s41598-019-38966-0
|
14 |
SHRIVASTAVA V K, PRADHAN M K. Rice plant disease classification using transfer learning of deep convolution neural network. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019,XLII-3/W6:631-635. DOI:10.5194/isprs-archives-XLII-3-W6-631-2019
doi: 10.5194/isprs-archives-XLII-3-W6-631-2019
|
15 |
CHEN J D, ZHANG D F, NANEHKARAN Y A, et al. Detection of rice plant diseases based on deep transfer learning. Journal of the Science of Food and Agriculture, 2020,100(7):3246-3256. DOI:10.1002/jsfa.10365
doi: 10.1002/jsfa.10365
|
16 |
DONG M P, MU S M, SHI A J, et al. Novel method for identifying wheat leaf disease images based on differential amplification convolutional neural network. International Journal of Agricultural and Biological Engineering, 2020,13(4):205-210. DOI:10.25165/j.ijabe.20201304.4826
doi: 10.25165/j.ijabe.20201304.4826
|
17 |
BURHAN S A, MINHAS D S, TARIQ D A, et al. Comparative study of deep learning algorithms for disease and pest detection in rice crops//2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). New York, U.S.: IEEE, 2020:1-5. DOI:10.1109/ECAI50035.2020.9223239
doi: 10.1109/ECAI50035.2020.9223239
|
18 |
SHAHRIAR T M, AYRIN A, HASAN M, et al. An image processing framework to identify rice blast: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). New York, U.S.: IEEE, 2020:1-5. DOI: 10.1109/HORA49412.2020.9152912
doi: 10.1109/HORA49412.2020.9152912
|
19 |
CHEN J S, GONG M L, WANG D, et al. Leaf blast spot detection method based on Linknet//Second Target Recognition and Artificial Intelligence Summit Forum Proceedings of SPIE. [S. l.: s. n.], 2020,1142742:1-6. DOI:10.1117/12.2553085
doi: 10.1117/12.2553085
|
20 |
ZHOU G X, ZHANG W Z, CHEN A B, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion. IEEE Access, 2019,7:143190-143206. DOI:10.1109/ACCESS.2019.2943454
doi: 10
|
21 |
黄双萍,孙超,齐龙,等.基于深度卷积神经网络的水稻穗瘟病检测方法.农业工程学报,2017,33(20):169-176. DOI:10.11975/j.issn.1002-6819.2017.20.021 HUANG S P, SUN C, QI L, et al. Detection method of rice ear blast based on deep convolutional neural network. Transactions of the CSAE, 2017,33(20):169-176. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2017.20.021
|
22 |
YANGSEON K, ROH J H, KIM H Y, et al. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability, 2017,10(1):34. DOI:10.3390/su10010034
doi: 10.3390/su10010034
|
23 |
HE K M, GKIOXARI G, DOLLáR P, et al. Mask-RCNN//IEEE International Conference on Computer Vision (ICCV). New York, U.S.: IEEE, 2017:2980-2988. DOI:10.1109/ICCV.2017.322
doi: 10.1109/ICCV.2017.322
|
24 |
TODA Y, OKURA F. How convolutional neural networks diagnose plant disease?Plant Phenomics, 2019,2019:9237136. DOI:10.34133/2019/9237136
doi: 10.34133/2019/9237136
|
25 |
ZEILER M D, FERGUS R. Visualizing and Understanding Convolutional Networks. Cham, Switzerland: Springer, 2014:818-833. DOI:10.1007/978-3-319-10590-1_53
doi: 10.1007/978-3-319-10590-1_53
|
26 |
SHRIVASTAVA V K, PRADHAN M K. Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 2021,103(1):17-26. DOI:10.1007/s42161-020-00683-3
doi: 10.1007/s42161-020-00683-3
|
27 |
ZHANG J, YANG L F, HOU J Y, et al. Recognition of rice leaf diseases based on salient characteristics//2018 13th World Congress on Intelligent Control and Automation. [S. l.: s. n.], 2018:801-806. DOI:10.1109/WCICA.2018.8630414
doi: 10.1109/WCICA.2018.8630414
|
28 |
DUPUIS D J, VICTORIAFESER M P. Fast robust model selection in large datasets. Journal of the American Statistical Association, 2011,106(493):203-212. DOI:10.1198/jasa.2011.tm09650
doi: 10.1198/jasa.2011.tm09650
|
29 |
CHEN L, YUAN Y. Agricultural Disease Image Dataset for Disease Identification Based on Machine Learning. Cham, Switzerland: Springer, 2019:263-274. DOI:10.1007/978-3-030-28061-1_26
doi: 10.1007/978-3-030-28061-1_26
|
30 |
林相泽,朱赛华,张俊媛,等.基于迁移学习和Mask R-CNN的稻飞虱图像分类方法.农业机械学报,2019,50(7):201-207. DOI:10.6041/j.issn.1000-1298.2019.07.021 LIN X Z, ZHU S H, ZHANG J Y, et al. Rice planthopper image classification method based on transfer learning and Mask R-CNN. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(7):201-207. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2019.07.021
|
31 |
OLLINGER S V. Sources of variability in canopy reflectance and the convergent properties of plants. The New Phytologist, 2011,189(2):375-394. DOI:10.1111/j.1469-8137.2010.03536.x
doi: 10.1111/j.1469-8137.2010.03536.x
|
32 |
ALENYA G, DELLEN B, FOIX S, et al. Robotized plant probing: leaf segmentation utilizing time-of-flight data. IEEE Robotics & Automation Magazine, 2013,20(3):50-59. DOI:10.1109/MRA.2012.2230118
doi: 10.1109/MRA.2012.2230118
|
33 |
SEPULVEDA D, FERNANDEZ R, NAVAS E, et al. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access, 2020,8:121889-121904. DOI:10.1109/ACCESS.2020.3006919
doi: 10.1109/ACCESS.2020.3006919
|
34 |
FENG L, WU B H, ZHU S S, et al. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods. Frontiers in Plant Science, 2020,11:577063. DOI:10.3389/fpls.2020.577063
doi: 10.3389/fpls.2020.577063
|
35 |
冯雷,柴荣耀,孙光明,等.基于多光谱成像技术的水稻叶瘟检测分级方法研究.光谱学与光谱分析,2009,29(10):2730-2733. DOI:10.3964/j.issn.1000-0593(2009)10-2730-04 FENG L, CHAI R Y, SUN G M, et al. Research on detection and classification method of rice leaf blast based on multispectral imaging technology. Spectroscopy and Spectral Analysis, 2009,29(10):2730-2733. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2009)10-2730-04
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|