Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 415-428    DOI: 10.3785/j.issn.1008-9209.2021.05.131
作物表型分析技术及应用专题     
基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估
谢鹏尧1,2(),富昊伟3,唐政1,2,麻志宏1,2,岑海燕1,2()
1.浙江大学生物系统工程与食品科学学院,杭州 310058
2.农业农村部光谱检测重点实验室,杭州 310058
3.嘉兴市农业科学研究院,浙江 嘉兴 314016
RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale
Pengyao XIE1,2(),Haowei FU3,Zheng TANG1,2,Zhihong MA1,2,Haiyan CEN1,2()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
3.Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, Zhejiang, China
 全文: PDF(14414 KB)   HTML
摘要:

针对依赖人工主观判断水稻叶瘟抗性费时费力且准确率低的问题,本文提出了一种基于水稻冠层尺度RGB图像和掩膜区域卷积神经网络(mask regions with convolutional neural network, Mask-RCNN)深度学习框架的水稻叶瘟病斑识别检测方法,通过分析水稻RGB图像中不同类别病斑的数量信息,构建多种分类模型来评估病斑数量和抗性水平之间的关联性。首先采集包括粳稻品系、早籼品系和籼型恢复系等不同品系的水稻育种材料的苗期RGB图像,然后通过对输入图像进行预处理和标记,最终建立了用于识别水稻叶瘟病斑的Mask-RCNN模型,实现了叶瘟病斑的矩形框检测、掩膜分割和分类,其平均交并比(mean intersection over union, mIoU)为0.603。当采用0.5的交并比(intersection over union, IoU)阈值时,测试数据集的病斑检测平均准确率均值(mean average precision, mAP)为0.716。在基于病斑数量的抗性评估模型中,高斯过程支持向量机在测试数据集上取得了94.30%的最高抗性评估准确率。研究结果表明,基于水稻冠层RGB图像和Mask-RCNN模型可实现水稻叶瘟病的准确识别,检测的病斑数量特征和叶瘟抗性水平高度相关。本研究为水稻抗病性品种的高效选育提供了技术支撑。

关键词: 冠层尺度水稻病害叶瘟检测深度学习抗性评估    
Abstract:

Visual inspection of rice leaf blast resistance is time-consuming and labor-intensive with low accuracy. Therefore, this study aims to identify and detect rice leaf blast spots based on RGB imaging of rice canopy combined with mask regions with convolutional neural network (Mask-RCNN), and develop multiple classification models to quantify the number of disease spots and evaluate the association between the number of disease spots and the resistance level by analyzing the quantitative information of different categories of disease spots in RGB images of rice. First, we collected RGB images from different rice breeding lines at the seedling stage, including japonica lines, early indica lines and indica recovery lines. Preprocessing and labeling of the input images were then performed. A Mask-RCNN model for the recognition of rice leaf blast spots was developed to perform the rectangular frame detection, mask segmentation and classification. The classification result of rice leaf blast spots with the mean intersection over union (mIoU) of 0.603 was achieved. The mean average precision (mAP) of the test dataset was 0.716, when the intersection over union (IoU) threshold of 0.5 was used. Among all the classification models, Gaussian process support vector machine obtained the highest prediction accuracy of 94.30% (proportion of disease spots in each category corresponding to different resistances) on the test dataset. The above results demonstrate that RGB images of rice canopy combined with Mask-RCNN have the great potential for the accurate identification of rice leaf blast spots, and the number of detected disease spots is highly correlated with the rice leaf blast resistance level. The proposed method is promising for efficient selection of disease-resistant rice varieties in breeding.

Key words: canopy scale    rice disease    leaf blast detection    deep learning    resistance evaluation
收稿日期: 2021-05-13 出版日期: 2021-09-02
CLC:  TP 751  
基金资助: 浙江省重点研发计划(2020C02002);浙江省嘉兴市科技计划项目应用性基础研究专项(2019AY11006)
通讯作者: 岑海燕     E-mail: pyxie@zju.edu.cn;hycen@zju.edu.cn
作者简介: 谢鹏尧(https://orcid.org/0000-0002-1014-5399),E-mail:pyxie@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢鹏尧
富昊伟
唐政
麻志宏
岑海燕

引用本文:

谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.

Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.05.131        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/415

图1  原始图像和分割图像示例红色实线框表示1 500×1 500裁剪区域;蓝色虚线框内的图片表示相机视野覆盖栽种单一品系的区块;其他未被框选的图片表示相机聚焦的局部病斑。
图2  水稻叶瘟病斑类型A.慢性型病斑;B.急性型病斑;C.褐点型病斑;D.白点型病斑。
图3  数据处理流程
图4  Mask-RCNN模型架构FPN:特征金字塔网络;RPN:区域生成网络;RoI:感兴趣区域。
图5  Mask-RCNN损失函数变化曲线
图6  Mask-RCNN预测结果示例矩形虚线框和掩膜为模型生成结果,每个结果上都有病斑类别预测结果和置信度。
  
图8  Mask-RCNN模型输出部分可视化
图9  分类数据集中数据分布情况A.各品系水稻抗性分布;B.不同抗性对应各类别病斑数量占比。R:抗病型;M:中感型;S:感病型;S+:高感型。

模型

Model

最优化参数

Optimal parameter

分类准确率

Classification accuracy/%

决策树 Decision tree最大分裂数=20 Maximum number of splits=2093.90
线性判别 Linear discrimination89.40
朴素贝叶斯 Naive BayesianMVMIN分布 MVMIN distribution92.00

线性支持向量机

Linear support vector machine

线性核

Linear kernel

92.40

高斯过程支持向量机

Gaussian process support vector machine

高斯核尺度sqrt(P)(P为预测变量的数量)

sqrt (P): Gaussian kernel scale (P: Number of predictor variables)

94.30
K-最近邻 K-nearest neighbor邻点数=10 Number of neighboring points=1092.40
表1  不同分类模型的分类结果
图10  高斯过程支持向量机分类结果混淆矩阵
图11  慢性型病斑特征
图12  人工标注和预测结果生成的病斑掩膜对比分析A.病斑标注和训练结果;B.人工标注掩膜和预测结果掩膜像素占比。
图13  冠层尺度水稻病斑识别分割面临的挑战1~2:病斑被遮挡的2种情况;3:虚焦导致病斑清晰度降低;4:水面高亮干扰病斑检测。
1 OERKE E C. Remote sensing of diseases. Annual Review of Phytopathology, 2020,58(1):225-252. DOI:10.1146/annurev-phyto-010820-012832
doi: 10.1146/annurev-phyto-010820-012832
2 RATH A K, MEHER J K. Disease detection in infected plant leaf by computational method. Archives of Phytopathology and Plant Protection, 2019,52(19/20):1348-1358. DOI:10.1080/03235408.2019.1708546
doi: 10.1080/03235408.2019.1708546
3 贺闽,尹俊杰,冯志明,等.水稻稻瘟病和纹枯病抗性鉴定方法.植物学报,2020,55(5):577-587. DOI:10.11983/CBB20100
HE M, YIN J J, FENG Z M, et al. Identification method of rice blast and sheath blight resistance. Chinese Bulletin of Botany, 2020,55(5):577-587. (in Chinese with English abstract)
doi: 10.11983/CBB20100
4 SENAN N, AAMIR M, IBRAHIM R, et al. An efficient convolutional neural network for paddy leaf disease and pest classification. International Journal of Advanced Computer Science and Applications, 2020,11(7):116-122. DOI:10.14569/IJACSA.2020.0110716
doi: 10.14569/IJACSA.2020.0110716
5 张凝,杨贵军,赵春江,等.作物病虫害高光谱遥感进展与展望.遥感学报,2021,25(1):403-422. DOI:10.118340rs.20210196
ZHANG N, YANG G J, ZHAO C J, et al. Progress and prospect of hyperspectral remote sensing of crop pests and diseases. National Remote Sensing Bulletin, 2021,25(1):403-422. (in Chinese with English abstract)
doi: 10.118340rs.20210196
6 GUCHAIT N, BHAKTA I, PHADIKAR S, et al. Visual computing for blast and brown spot disease detection in rice leaves//Proceedings of the 2nd International Conference on Communication, Devices and Computing. Singapore: Springer, 2020:595-606. DOI:10.1007/978-981-15-0829-5_56
doi: 10.1007/978-981-15-0829-5_56
7 BAKAR M N ABU, ABDULLAH A H, ABDUL RAHIM N, et al. Rice leaf blast disease detection using multi-level colour image thresholding. Journal of Telecommunication, Electronic and Computer Engineering, 2018,10:1-6.
8 PEYMAN S H, ZIARATGAHI A B, JAFARI A, et al. Exploring the possibility of using digital image processing technique to detect diseases of rice leaf. Journal of Agricultural Machinery, 2016,6(1):69-79. DOI:10.22067/jam.v6i1.32031
doi: 10.22067/jam.v6i1.32031
9 GAYATHRI DEVI T, NEELAMEGAM P. Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu. Cluster Computing, 2019,22:S13415-S13428. DOI:10.1007/s10586-018-1949-x
doi: 10.1007/s10586-018-1949-x
10 LARIJANI M R, ASLIARDEH E A, KOZEGAR E, et al. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means. Food Science & Nutrition, 2019,7(12):3922-3930. DOI:10.1002/fsn3.1251
doi: 10.1002/fsn3.1251
11 KANG J J, MA Y, XIAO M H, et al. Rice blast recognition based on image processing and BP neural network. International Agricultural Engineering Journal, 2018,27(1):250-256.
12 RAMESH S, VYDEKI D. Rice blast disease detection and classification using machine learning algorithm//2018 2nd International Conference on Micro-Electronics and Telecom-munication Engineering (ICMETE). New York, U.S.: IEEE, 2018:255-259. DOI:10.1109/ICMETE.2018.00063
doi: 10.1109/ICMETE.2018.00063
13 LIANG W J, ZHANG H, ZHANG G F, et al. Rice blast disease recognition using a deep convolutional neural network. Scientific Reports, 2019,9(1):2869. DOI:10.1038/s41598-019-38966-0
doi: 10.1038/s41598-019-38966-0
14 SHRIVASTAVA V K, PRADHAN M K. Rice plant disease classification using transfer learning of deep convolution neural network. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019,XLII-3/W6:631-635. DOI:10.5194/isprs-archives-XLII-3-W6-631-2019
doi: 10.5194/isprs-archives-XLII-3-W6-631-2019
15 CHEN J D, ZHANG D F, NANEHKARAN Y A, et al. Detection of rice plant diseases based on deep transfer learning. Journal of the Science of Food and Agriculture, 2020,100(7):3246-3256. DOI:10.1002/jsfa.10365
doi: 10.1002/jsfa.10365
16 DONG M P, MU S M, SHI A J, et al. Novel method for identifying wheat leaf disease images based on differential amplification convolutional neural network. International Journal of Agricultural and Biological Engineering, 2020,13(4):205-210. DOI:10.25165/j.ijabe.20201304.4826
doi: 10.25165/j.ijabe.20201304.4826
17 BURHAN S A, MINHAS D S, TARIQ D A, et al. Comparative study of deep learning algorithms for disease and pest detection in rice crops//2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). New York, U.S.: IEEE, 2020:1-5. DOI:10.1109/ECAI50035.2020.9223239
doi: 10.1109/ECAI50035.2020.9223239
18 SHAHRIAR T M, AYRIN A, HASAN M, et al. An image processing framework to identify rice blast: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). New York, U.S.: IEEE, 2020:1-5. DOI: 10.1109/HORA49412.2020.9152912
doi: 10.1109/HORA49412.2020.9152912
19 CHEN J S, GONG M L, WANG D, et al. Leaf blast spot detection method based on Linknet//Second Target Recognition and Artificial Intelligence Summit Forum Proceedings of SPIE. [S.
l.: s. n.], 2020,1142742:1-6. DOI:10.1117/12.2553085
doi: 10.1117/12.2553085
20 ZHOU G X, ZHANG W Z, CHEN A B, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion. IEEE Access, 2019,7:143190-143206. DOI:10.1109/ACCESS.2019.2943454
doi: 10
21 黄双萍,孙超,齐龙,等.基于深度卷积神经网络的水稻穗瘟病检测方法.农业工程学报,2017,33(20):169-176. DOI:10.11975/j.issn.1002-6819.2017.20.021
HUANG S P, SUN C, QI L, et al. Detection method of rice ear blast based on deep convolutional neural network. Transactions of the CSAE, 2017,33(20):169-176. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2017.20.021
22 YANGSEON K, ROH J H, KIM H Y, et al. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability, 2017,10(1):34. DOI:10.3390/su10010034
doi: 10.3390/su10010034
23 HE K M, GKIOXARI G, DOLLáR P, et al. Mask-RCNN//IEEE International Conference on Computer Vision (ICCV). New York, U.S.: IEEE, 2017:2980-2988. DOI:10.1109/ICCV.2017.322
doi: 10.1109/ICCV.2017.322
24 TODA Y, OKURA F. How convolutional neural networks diagnose plant disease?Plant Phenomics, 2019,2019:9237136. DOI:10.34133/2019/9237136
doi: 10.34133/2019/9237136
25 ZEILER M D, FERGUS R. Visualizing and Understanding Convolutional Networks. Cham, Switzerland: Springer, 2014:818-833. DOI:10.1007/978-3-319-10590-1_53
doi: 10.1007/978-3-319-10590-1_53
26 SHRIVASTAVA V K, PRADHAN M K. Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 2021,103(1):17-26. DOI:10.1007/s42161-020-00683-3
doi: 10.1007/s42161-020-00683-3
27 ZHANG J, YANG L F, HOU J Y, et al. Recognition of rice leaf diseases based on salient characteristics//2018 13th World Congress on Intelligent Control and Automation. [S.
l.: s. n.], 2018:801-806. DOI:10.1109/WCICA.2018.8630414
doi: 10.1109/WCICA.2018.8630414
28 DUPUIS D J, VICTORIAFESER M P. Fast robust model selection in large datasets. Journal of the American Statistical Association, 2011,106(493):203-212. DOI:10.1198/jasa.2011.tm09650
doi: 10.1198/jasa.2011.tm09650
29 CHEN L, YUAN Y. Agricultural Disease Image Dataset for Disease Identification Based on Machine Learning. Cham, Switzerland: Springer, 2019:263-274. DOI:10.1007/978-3-030-28061-1_26
doi: 10.1007/978-3-030-28061-1_26
30 林相泽,朱赛华,张俊媛,等.基于迁移学习和Mask R-CNN的稻飞虱图像分类方法.农业机械学报,2019,50(7):201-207. DOI:10.6041/j.issn.1000-1298.2019.07.021
LIN X Z, ZHU S H, ZHANG J Y, et al. Rice planthopper image classification method based on transfer learning and Mask R-CNN. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(7):201-207. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2019.07.021
31 OLLINGER S V. Sources of variability in canopy reflectance and the convergent properties of plants. The New Phytologist, 2011,189(2):375-394. DOI:10.1111/j.1469-8137.2010.03536.x
doi: 10.1111/j.1469-8137.2010.03536.x
32 ALENYA G, DELLEN B, FOIX S, et al. Robotized plant probing: leaf segmentation utilizing time-of-flight data. IEEE Robotics & Automation Magazine, 2013,20(3):50-59. DOI:10.1109/MRA.2012.2230118
doi: 10.1109/MRA.2012.2230118
33 SEPULVEDA D, FERNANDEZ R, NAVAS E, et al. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access, 2020,8:121889-121904. DOI:10.1109/ACCESS.2020.3006919
doi: 10.1109/ACCESS.2020.3006919
34 FENG L, WU B H, ZHU S S, et al. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods. Frontiers in Plant Science, 2020,11:577063. DOI:10.3389/fpls.2020.577063
doi: 10.3389/fpls.2020.577063
35 冯雷,柴荣耀,孙光明,等.基于多光谱成像技术的水稻叶瘟检测分级方法研究.光谱学与光谱分析,2009,29(10):2730-2733. DOI:10.3964/j.issn.1000-0593(2009)10-2730-04
FENG L, CHAI R Y, SUN G M, et al. Research on detection and classification method of rice leaf blast based on multispectral imaging technology. Spectroscopy and Spectral Analysis, 2009,29(10):2730-2733. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2009)10-2730-04
[1] 王晓慧,周昆鹏. 自然环境中的红色番茄图像识别方法研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 395-403.