Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (1): 74-88    DOI: 10.3785/j.issn.1008-9209.2020.04.081
资源利用与环境保护     
关键时期淹水对不同土壤上水稻镉累积和转运的影响
邹文娴1(),周于宁1,顾思婷1,黄涂海1,支裕优1,孟龙1,施加春1(),陈謇2,徐建明1
1.浙江大学环境与资源学院土水资源与环境研究所,杭州 310058
2.温岭市农业农村和水利局,浙江 台州 317500
Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils
Wenxian ZOU1(),Yuning ZHOU1,Siting GU1,Tuhai HUANG1,Yuyou ZHI1,Long MENG1,Jiachun SHI1(),Jian CHEN2,Jianming XU1
1.Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Bureau of Agriculture & Rural and Water Resource of Wenling, Taizhou 317500, Zhejiang, China
 全文: PDF(1718 KB)   HTML
摘要:

采用水稻盆栽试验,设置全生育期湿润(CK)、全生育期淹水(YS)、分蘖-拔节期淹水(FB)、抽穗期淹水(CS)和灌浆-成熟期淹水(GC)5个处理,探索水稻关键生长时期的淹水模式对2种土壤(淡涂黏田和洪积泥砂田)上水稻镉(Cd)累积转运的影响。结果表明:水稻分蘖期2种土壤的可交换态Cd含量呈现CK≈CS≈GC?FB≈YS,而在水稻的其他生长时期呈现CK≈FB≈CS≈GC?YS。在淡涂黏田中,水稻籽粒Cd含量呈现FB>GC≈CK>CS>YS,CS比CK处理下降49.99%;而洪积泥砂田中籽粒Cd含量为CK≈GC>CS≈FB>YS,FB和CS处理分别比CK处理下降50.52%和44.85%。在淡涂黏田中,与CK处理相比,CS处理明显降低了茎向籽粒Cd的转运能力而FB处理增加了其转运能力;在洪积泥砂田中,与CK处理相比,FB和CS处理均明显降低了茎向籽粒Cd的转运能力。在这2种土壤中,水稻籽粒Cd与根表Cd含量均呈正相关关系;FB和CS处理均能降低根表Cd含量;且FB处理根表铁膜[主要成分是连二亚硫酸钠-柠檬酸盐-碳酸氢盐-铁(dithion-citrate-bicarbonate-Fe, DCB-Fe),其次是根表氧化锰DCB-Mn]含量均明显高于其他处理。其中,洪积泥砂田水稻根表DCB-Fe、DCB-Mn与籽粒Cd含量分别呈显著(P<0.05)和极显著(P<0.01)负相关,但在淡涂黏田上不存在任何相关性。综上所述,水稻关键时期淹水处理通过影响根表Cd含量和Cd从茎向籽粒的转运能力来影响水稻籽粒Cd的累积。抽穗期是淡涂黏田水稻降Cd的关键淹水时期,而在洪积泥砂田中是分蘖-拔节期和抽穗期。不同土壤中水稻铁膜对籽粒Cd积累的影响不同,导致2种土壤的关键淹水时期有所差异。

关键词: 土壤有效镉关键时期淹水水稻转运系数根表铁膜镉积累    
Abstract:

A pot experiment was conducted in two paddy soils [paddy field on desalting clayey polder soil (PC) and diluvial gritty loaming paddy soil (DP)] to explore the effects of critical stage moisture managements on cadmium (Cd) accumulation and translocation in rice with five water managements. The water managements were moisture throughout growth (CK), continuous flooding (YS), flooding at tillering-jointing stage (FB), flooding at heading stage (CS) and flooding at filling-maturing stage (GC). The results showed that, in tillering stage, the contents of soil exchangeable Cd were CK≈CS≈GC?FB≈YS, and in other rice growth stages, which were CK≈FB≈CS≈GC?YS. In PC, Cd contents in grain were FB>GC≈CK>CS>YS, and Cd content in grain of CS treatment decreased by 49.99% as compared with the CK. In DP, Cd contents in grain were CK≈GC>CS≈FB>YS, and Cd contents in grain of FB and CS treatments decreased by 50.52% and 44.85%, respectively, when compared with the CK. In PC, when compared with the CK treatment, CS treatment decreased the Cd translocation factor from stem to grain (TF2), but FB treatment increased it. In DP, both FB and CS treatments reduced TF2, when compared with the CK. There was a positive correlation between Cd content in grain and Cd content on root surface, and FB and CS treatments decreased the Cd contents on root surface in both paddy soils. FB treatment significantly increased the dithion-citrate-bicarbonate (DCB)-Fe content compared with other treatments in both paddy soils. The Cd content in grain had significant (P<0.05) and highly significant (P<0.01) negative correlation relationships with DCB-Fe and DCB-Mn in DP, but the relationship was not observed in PC. In summary, flooding measures in different stages influence the Cd content in grain by affecting the Cd translocation from stem to grain and affecting Cd content on root surface. Heading stage is the critical flooding stage in PC. In DP, tillering-jointing and heading stages are the critical flooding stages. The iron plaque has different effects on grain Cd accumulation and translocation in different paddy soils, which resulting in different critical flooding stages in two paddy soils.

Key words: soil available cadmium    critical stage flooding    rice    translocation factor    iron plaque on the root surface    cadmium accumulation
收稿日期: 2020-04-08 出版日期: 2021-03-09
CLC:  X  
基金资助: 国家重点研发计划(2016YFD0200106-4);浙江省农业“两区”土壤污染治理试点项目;浙北平原典型镉污染耕地生态修复与安全利用示范项目
通讯作者: 施加春     E-mail: 21714107@zju.edu.cn;jcshi@zju.edu.cn
作者简介: 邹文娴(https://orcid.org/0000-0002-4108-1674),E-mail:21714107@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹文娴
周于宁
顾思婷
黄涂海
支裕优
孟龙
施加春
陈謇
徐建明

引用本文:

邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.

Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.04.081        http://www.zjujournals.com/agr/CN/Y2021/V47/I1/74

土壤

Soil

pH

质地

Texture

w(全镉)

Total Cd

content/

(mg/kg)

w(有效镉)

Available Cd

content/

(mg/kg)

w(全铁)

Total Fe

content/

(mg/kg)

w(全锰)

Total Mn

content/

(mg/kg)

w(全硫)

Total S

content/

(g/kg)

w(有机质)

Organic

matter

content/(g/kg)

w(全氮)

Total N

content/

(g/kg)

淡涂黏田 PC5.8中壤土1.100.6119 169.21133.990.7741.022.69
洪积泥砂田 DP5.1砂壤土0.910.7118 544.94258.490.3237.732.52
表1  供试土壤理化性质和重金属含量

水分管理方式

Water management

操作方法

Operational method

全生育期湿润

Moisture throughout growth (CK)

整个生育期保持土壤水分约为田间持水量的60%(苗期浅水灌溉)

全生育期淹水

Continuous flooding (YS)

整个生育期保持表土以上4~5 cm水层(苗期浅水灌溉)

分蘖-拔节期淹水

Flooding at tillering-jointing stage (FB)

分蘖-拔节期保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)

抽穗期淹水

Flooding at heading stage (CS)

抽穗期保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)

灌浆-成熟期淹水

Flooding at filling-maturing stage (GC)

灌浆-成熟期淹水保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)
表2  不同水分管理方式的条件控制
图1  不同水分管理措施下土壤氧化还原电位(Eh)的动态变化A.淡涂黏田;B.洪积泥砂田。各处理符号表示的含义详见表2。绿色区域表示苗期淹水时间(第0—25天),黄色区域表示分蘖和拔节期淹水时间(第26—80天),蓝色区域表示抽穗期淹水时间(第81—95天),白色区域表示灌浆和成熟期淹水时间(第96—150天)。
图2  不同水分管理措施下土壤pH的动态变化A.淡涂黏田;B.洪积泥砂田。各处理符号表示的含义详见表2。绿色区域表示苗期淹水时间(第0—25天),黄色区域表示分蘖和拔节期淹水时间(第26—80天),蓝色区域表示抽穗期淹水时间(第81—95天),白色区域表示灌浆和成熟期淹水时间(第96—150天)。
图3  不同水分管理措施下土壤Cd形态组成的动态变化A.淡涂黏田;B.洪积泥砂田。各处理符号表示的含义详见表2。F1:可交换态Cd;F2:包括碳酸盐态在内的特异性吸附态Cd;F3:非晶态铁锰结合态Cd;F4:有机物和硫化物结合态Cd;F5:残留态Cd。
图4  不同水分管理措施下土壤DGT-Fe、DGT-Mn、DGT-P和DGT-S含量的动态变化A1~A4.淡涂黏田;B1~B4.洪积泥砂田。各处理符号表示的含义详见表2。短栅上的不同小写字母表示在同一时期不同处理间在P<0.05水平差异有统计学意义;n=3。

生育期

Growth

period

部位

Part

参量

Parameter

淡涂黏田 PC洪积泥砂田 DP

籽粒Cd

Cd in grain

根表Cd2+

Cd2+ on root surface

可交换态Cd

Exchangeable Cd

籽粒Cd Cd in grain

根表Cd2+

Cd2+ on root surface

可交换态Cd

Exchangeable Cd

成熟期

Maturing stage

根表

Root

surface

Cd0.706*0.979**0.886**0.4210.992**0.767**
DCB-Fe0.021-0.277-0.097-0.718*0.088-0.228
DCB-Mn0.0580.0930.209-0.804**0.162-0.118
Cd2+0.6150.903**0.3360.740*
Fe2+-0.463-0.631-0.754*-0.407-0.697*-0.696*
Mn2+0.2990.667*0.626-0.262-0.742*-0.740*

全生育期

Whole growth stage

根表

Root

surface

Cd2+0.546**0.249
Fe2+-0.435**-0.427**-0.255-0.478**
Mn2+-0.049-0.207-0.432**-0.599**
土壤SoilDGT-Fe-0.752**-0.703**-0.220-0.724**
DGT-Mn-0.619**-0.467**-0.245-0.675**
DGT-S-0.648**-0.565**-0.162-0.531**
DGT-P-0.504**-0.336*-0.047-0.685**
表3  在不同时期土壤、水稻根表及籽粒元素之间的相关性
图5  不同水分管理措施下水稻根表铁膜含量的动态变化A.淡涂黏田;B.洪积泥砂田。各处理符号表示的含义详见表2。短栅上的不同小写字母表示在同一时期不同处理间在P<0.05水平差异有统计学意义;n=3。
图6  不同水分管理措施下水稻根表Cd含量的动态变化A.淡涂黏田;B.洪积泥砂田。各处理符号表示的含义详见表2。短栅上的不同小写字母表示在同一时期不同处理间在P<0.05水平差异有统计学意义;n=3。
图7  不同水分管理措施下水稻籽粒、根系、茎和叶片Cd含量各处理符号表示的含义详见表2。短栅上的不同小写字母表示在同一时期不同处理间在P<0.05水平差异有统计学意义;n=3。

处理

Treatment

淡涂黏田 PC洪积泥砂田 DP
TF1TF2TF3TF1TF2TF3
CK0.29±0.08ab0.11±0.03bc0.26±0.04b0.53±0.06a0.10±0.03b0.38±0.13ab
YS0.22±0.12b0.19±0.07ab0.25±0.11b0.29±0.23b0.20±0.09a0.26±0.10ab
FB0.20±0.03b0.20±0.04a2.75±1.55a0.38±0.05ab0.05±0.02b0.51±0.30a
CS0.27±0.01ab0.07±0.03c0.15±0.02b0.36±0.07ab0.05±0.02b0.17±0.07b
GC0.39±0.11a0.17±0.02ab0.31±0.04b0.34±0.05ab0.11±0.04ab0.27±0.07ab
表4  不同水分管理措施下水稻Cd转运系数
1 CHOPPALA G, SAIFULLAH, BOLAN N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 2014,33(5):374-391. DOI:10.1080/07352689.2014.903747
doi: 10.1080/07352689.2014.903747
2 CHEN X, CHEN X, WANG Y J, et al. A nomogram for predicting the renal dysfunction in a Chinese population with reduction in cadmium exposure based on an 8 years follow up study. Ecotoxicology and Environmental Safety, 2020,191:110251. DOI:10.1016/j.ecoenv.2020.110251
doi: 10.1016/j.ecoenv.2020.110251
3 SATARUG S, GARRETT S H, SENS M A, et al. Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 2010,18(2):182-190. DOI:10.1289/ehp.0901234
doi: 10.1289/ehp.0901234
4 YUAN L P. Development of hybrid rice to ensure food security. Rice Science, 2014,21(1):1-2. DOI:10.1016/S1672-6308(13)60167-5
doi: 10.1016/S1672-6308(13)60167-5
5 SUI F Q, CHANG J D, TANG Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant and Soil, 2018,433(1):377-389. DOI:10.1007/s11104-018-3849-5
doi: 10.1007/s11104-018-3849-5
6 YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019,10(1):1-12. DOI:10.1038/s41467-019-10544-y
doi: 10.1038/s41467-019-10544-y
7 环境保护部,国土资源部.全国土壤污染状况调查公报,2014. 140417558995804588.pdf
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Report on the National Soil Con-tamination Survey, 2014. (in Chinese)
8 GONG Y, ZHAO D Y, WANG Q L, et al. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Research, 2018,147:440-460. DOI:10.1016/j.watres.2018.10.024
doi: 10.1016/j.watres.2018.10.024
9 LI J R, XU Y M. Use of clay to remediate cadmium contaminated soil under different water management regimes. Ecotoxicology and Environmental Safety, 2017,141:107-112. DOI:10.1016/j.ecoenv.2017.03.021
doi: 10.1016/j.ecoenv.2017.03.021
10 LI J R, XU Y M. Evaluation of palygorskite for remediation of Cd-polluted soil with different water conditions. Journal of Soils and Sediments, 2018,18(2):526-533. DOI:10.1007/s11368-017-1771-8
doi: 10.1007/s11368-017-1771-8
11 YE X X, LI H, ZHANG L. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ecotoxicology and Environmental Safety, 2018,147:708-714. DOI:10.1016/j.ecoenv.2017.09.034
doi: 10.1016/j.ecoenv.2017.09.034
12 苏雨婷,赵英杰,谷子寒,等.灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响.作物研究,2018,32(3):180-187. DOI:10.16848/j.cnki.issn.1001-5280.2018.03.02
SU Y T, ZHAO Y J, GU Z H, et al. Effect of irrigation mode on soil available Cd content and yield formation and Cd accumulation and distribution of double-cropping rice. Crop Research, 2018,32(3):180-187. (in Chinese with English abstract)
doi: 10.16848/j.cnki.issn.1001-5280.2018.03.02
13 KHAN N, SESHADRI B, BOLAN N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in Agronomy, 2016,139:1-96. DOI:10.1016/bs.agron.2016.04.002
doi: 10.1016/bs.agron.2016.04.002
14 HANSEL C M, FENDORF S, SUTTON S, et al. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology, 2001,35(19):3863-3868. DOI:10.1021/es0105459
doi: 10.1021/es0105459
15 LIU H, ZHANG J, CHRISTIE P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 2008,394(2):361-368. DOI:10.1016/j.scitotenv.2008.02.004
doi: 10.1016/j.scitotenv.2008.02.004
16 LI H B, ZHENG X W, TAO L X, et al. Aeration increases cadmium (Cd) retention by enhancing iron plaque formation and regulating pectin synthesis in the roots of rice (Oryza sativa) seedlings. Rice, 2019,12(1):1-14. DOI:10.1186/s12284-019-0291-0
doi: 10.1186/s12284-019-0291-0
17 WANG J J, DONG Q L, LU Q, et al. Effect of water-driven changes in rice rhizosphere on Cd lability in three soils with different pH. Journal of Environmental Sciences, 2020,87:82-92. DOI:10.1016/j.jes.2019.05.020
doi: 10.1016/j.jes.2019.05.020
18 LI J R, XU Y M. Immobilization remediation of Cd-polluted soil with different water condition. Journal of Environmental Management, 2017,193:607-612. DOI:10.1016/j.jenvman.2017.02.064
doi: 10.1016/j.jenvman.2017.02.064
19 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
LU R K. Soil Argrochemistry Analysis Protocols. Beijing: China Agriculture Science Press, 2000. (in Chinese)
20 WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environmental Science and Technology, 2019,53(5):2500-2508. DOI:10.1021/acs.est.8b06863
doi: 10.1021/acs.est.8b06863
21 刘桃菊,唐建军,胡岳峰,等.水稻根系建成对高产形成的模拟模型与调控决策研究:水稻根系生理参数与产量形成关系及其模拟模型研究.江西农业大学学报,1999,21(1):1-5.
LIU T J, TANG J J, HU Y F, et al. A study on simulation model and regulation of rice root growth affecting high yield formation: a study on the relationship between the physiological character parameters of root and yield formation in rice and the regulation model of rice growth. Acta Agriculturae Universitis Jiangxiensis, 1999,21(1):1-5. (in Chinese with English abstract)
22 凌启鸿,陆卫平,蔡建中.水稻不同类型品种叶龄进程根系活力的研究.江苏农学院学报,1987,8(3):25-28.
LING Q H, LU W P, CAI J Z. Study on root activity with leaf-age-progress in different rice varieties. Journal of Jiangsu Agricultural College, 1987,8(3):25-28. (in Chinese with English abstract)
23 CATTANI I, ROMANI M, BOCCELLI R. Effect of cultivation practices on cadmium concentration in rice grain. Agronomy for Sustainable Development, 2008,28(2):265-271. DOI:10.1051/agro:2007033
doi: 10.1051/agro:2007033
24 BHATTACHARYYA P, DAS S, ADHYA T K, et al. Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses. Communications in Soil Science and Plant Analysis, 2013,44(10):1643-1658. DOI:10.1080/00103624.2013.769562
doi: 10.1080/00103624.2013.769562
25 AULAKH M S, WASSMANN R, BUENO C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 2001,3(2):139-148. DOI:10.1055/s-2001-15205
doi: 10.1055/s-2001-15205
26 HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology, 2016,50(8):4178-4185. DOI:10.1021/acs.est.5b05424
doi: 10.1021/acs.est.5b05424
27 PAN Y Y, KOOPMANS G F, BONTEN L T C, et al. Temporal variability in trace metal solubility in a paddy soil not re?ected in uptake by rice. Environmental Geochemistry and Health, 2016,38(6):1355-1372. DOI:10.1007/s10653-016-9803-7
doi: 10.1007/s10653-016-9803-7
28 TIAN T, ZHOU H, GU J F, et al. Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.). Plant and Soil, 2019,440(1):327-339. DOI:10.1007/s11104-019-04094-x
doi: 10.1007/s11104-019-04094-x
29 范云涛,雷廷武,蔡强.湿润速度和累积降雨对土壤表面结皮发育的影响.土壤学报,2009,46(5):764-771.
FAN Y T, LEI T W, CAI Q. Effects of wetting rate and cumulative rainfall on crust formation. Acta Pedologica Sinica, 2009,46(5):764-771. (in Chinese with English abstract)
30 LI S S, WANG M, ZHAO Z Q, et al. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates. Environmental Science and Pollution Research, 2019,26(20):20929-20938. DOI:10.1007/s11356-019-05431-4
doi: 10.1007/s11356-019-05431-4
31 姚贤良,于德芬.关于集约农作制下的土壤结构问题:Ⅲ.不同培育条件下土壤结构的微形态特征.土壤学报,1988,25(1):55-58.
YAO X L, YU D F. On the soil structure under intensive farming system: Ⅲ. Micromorphological characteristics of soil structure under different conditions of incubation. Acta Pedologica Sinica, 1988,25(1):55-58. (in Chinese with English abstract)
32 李浩宏,王占礼,申楠,等.土壤结皮研究进展.人民黄河,2015,37(10):92-98. DOI:10.3969/j.issn.1000-1379.2015.10.024
LI H H, WANG Z L, SHEN N, et al. Research progress of soil crust. Yellow River, 2015,37(10):92-98. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1379.2015.10.024
33 张学.灌溉与农田的板结问题.灌溉排水,1984,3(1):14-20.
ZHANG X. Irrigation and farmland consolidation. Guangai Paishui, 1984,3(1):14-20. (in Chinese)
34 高鹏,李增嘉,杨慧玲,等.渗灌与漫灌条件下果园土壤物理性质异质性及其分形特征.水土保持学报,2008,22(2):155-158. DOI:10.13870/j.cnki.stbcxb.2008.02.039
GAO P, LI Z J, YANG H L, et al. Physical property heterogeneity and factal characteristics of soil particle in orchard under subsurface irrigation and flood irrigation. Journal of Soil and Water Conservation, 2008,22(2):155-158. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2008.02.039
35 李财,任明漪,石丹,等.薄膜扩散梯度(DGT):技术进展及展望.农业环境科学学报,2018,37(12):2613-2628. DOI:10.11654/jaes.2018-1403
LI C, REN M Y, SHI D, et al. Diffusive gradient in thin films (DGT): technological progress and prospects. Journal of Agro-Environment Science, 2018,37(12):2613-2628. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-1403
36 ZHANG H, SHAO J G, ZHANG S H, et al. Effect of phosphorus-modified biochars on immobilization of Cu(Ⅱ), Cd(Ⅱ), and As(Ⅴ) in paddy soil. Journal of Hazardous Materials, 2019:121349. DOI:10.1016/j.jhazmat.2019.121349
doi: 10.1016/j.jhazmat.2019.121349
37 SESHADRI B, BOLAN N S, WIJESEKARA H, et al. Phosphorus-cadmium interactions in paddy soils. Geoderma, 2016,270:43-59. DOI:10.1016/j.geoderma.2015.11.029
doi: 10.1016/j.geoderma.2015.11.029
38 BEATE F, VOEGELIN A, KRETZSCHMAR R, et al. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science and Technology, 2013,47(22):12775-12783. DOI:10.1021/es401997d
doi: 10.1021/es401997d
39 TAYLOR G J, CROWDER A A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. American Journal of Botany, 1983,70(8):1254-1257.
40 WANG X, YAO H X, WONG M H, et al. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environmental Geochemistry and Health, 2013,35(6):779-788. DOI:10.1007/s10653-013-9534-y
doi: 10.1007/s10653-013-9534-y
41 HUANG G X, DING C F, HU Z Y, et al. Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.). Science of the Total Environment, 2018,636:1040-1047. DOI:10.1016/j.scitotenv.2018.04.369
doi: 10.1016/j.scitotenv.2018.04.369
42 胡莹,黄益宗,黄艳超,等.不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响.农业环境科学学报,2013,32(3):432-437. DOI:10.11654/jaes.2013.03.004
HU Y, HUANG Y Z, HUANG Y C, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages. Journal of Agro-Environment Science, 2013,32(3):432-437. (in Chinese with English abstract)
doi: 10.11654/jaes.2013.03.004
43 SYU C H, WU P R, LEE C H, et al. Arsenic phytotoxicity and accumulation in rice seedlings grown in arsenic contaminated soils as influenced by the characteristics of organic matter amendments and soils. Journal of Plant Nutrition and Soil Science, 2019,182(1):60-71. DOI:10.1002/jpln.201800337
doi: 10.1002/jpln.201800337
44 FAN J L, XIA X, HU Z Y, et al. Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil and Environment, 2013,59(4):169-174. DOI:10.17221/882/2012-
PSE
doi: 10.17221/882/2012-
45 DING Y, WANG Z G, REN M L, et al. Iron and callose homeostatic regulation in rice roots under low phosphorus. BMC Plant Biology, 2018,18(1):326. DOI:10.1186/s12870-018-1486-z
doi: 10.1186/s12870-018-1486-z
46 汤克丽,蔡惠玲,罗乘露,等.商陆根表铁锰氧化胶膜形成的影响因素研究.福建师范大学学报(自然科学版),2015,31(2):76-82.
TANG K L, CAI H L, LUO C L, et al. Effects of the culture conditions on the formation of iron and manganese plaques on Phytolacca acinosa Roxb. root surface. Journal of Fujian Normal University (Natural Science Edition), 2015,31(2):76-82. (in Chinese with English abstract)
47 LI J R, XU Y M. Immobilization of Cd in paddy soil using moisture management and amendment. Environmental Science and Pollution Research, 2015,22(7):5580-5586. DOI:10.1007/s11356-014-3788-5
doi: 10.1007/s11356-014-3788-5
48 刘昭兵,纪雄辉,官迪,等.镉胁迫条件下淹水时间对水稻吸收累积镉的影响.生态与农村环境学报,2017,33(12):1125-1131. DOI:10.11934/j.issn.1673-4831.2017.12.009
LIU Z B, JI X H, GUAN D, et al. Effects of timing and duration of waterlogging on Cd absorption and accumulation by rice under cadmium stress. Journal of Ecology and Rural Environment, 2017,33(12):1125-1131. (in Chinese with English abstract)
doi: 10.11934/j.issn.1673-4831.2017.12.009
49 ARAO T, KAWASAKI A, BABA K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science and Technology, 2009,43(24):9361-9367. DOI:10.1021/es9022738
doi: 10.1021/es9022738
50 LIU H J, ZHANG J L, CHRISTIE P, et al. Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. Communications in Soil Science and Plant Analysis, 2010,41(5):584-594. DOI:10.1080/00103620903531169
doi: 10.1080/00103620903531169
51 CHEN H P, WANG P, GU Y, et al. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environmental Pollution, 2020,261:114151. DOI:10.1016/j.envpol.2020.114151
doi: 10.1016/j.envpol.2020.114151
52 熊丽萍,谢运河,黄伯军,等.水稻干物质与镉积累的动态效应.湖南农业科学,2017,12:43-46. DOI:10.16498/j.cnki.hnnykx.2017.012.007
XIONG L P, XIE Y H, HUANG B J, et al. Dynamic? characteristic of the dry?matter accumulation and Cd? absorption in rice. Hunan Agricultural Sciences, 2017,12:43-46. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2017.012.007
[1] 怀燕,陈照明,张耿苗,姜铭北,许剑锋,王强. 水稻侧深施肥技术的氮肥减施效应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 217-224.
[2] 尹华锋, 苏程, 冯存均, 李玉琴, 黄智才, 章孝灿. 基于样本知识挖掘的高分辨率遥感图像水稻种植信息提取方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 765-774.
[3] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.
[4] 张志昌, 潘伟槐, 严旭, 尹守鹏, 程祝宽, 潘建伟. 水稻根系生长素抗性突变体的筛选及表型鉴定[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 311-317.
[5] 蒲石林,邓飞,胡慧,钟晓媛,王丽,李武,李书先,廖爽,任万军. 杂交稻不同机插穴距及苗数配置对干物质生产与产量的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 21-30.
[6] 王永维,何焯亮,陈军,王俊,张羚玥,唐燕海. 碰撞气吹式杂交水稻授粉机结构与参数优化[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 98-106.
[7] 何明江,沈浩然,查婷, 于雄胜,刘杏梅. 水稻土中痕量多环芳烃的分析测定方法[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 766-774.
[8] 胡春琴,李睿,洪春来,曹雯婷,刘嘉伟,周骏,翁焕新. 海藻碘肥对田园水稻、蔬菜及水果碘含量的强化效果[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 552-560.
[9] 代邹,余华清,郭长春,马均,李娜,杨志远,徐徽,孙永健. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.
[10] 翁宇豪, 陈铭. 多层网络模型在水稻与癌症蛋白质互作网络中的应用[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 15-23.
[11] 代邹, 王春雨, 李娜, 蒋明金, 严奉君, 徐徽, 孙永健, 马均. 硒对不同水稻幼苗镉胁迫的缓解作用及其对矿质营养的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 720-730.
[12] 彭耀耀,侯春晓,詹仪花,黄莹莹,孙翔宇,翁晓燕. RIXI过量表达转基因水稻的全基因组表达谱分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 643-653.
[13] 叶欣怡, 赵杏, 王小鹏, 钟一铭, 杨京平. 土壤亚铁、镉对水稻2种抗氧化酶和植株富集镉量的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 89-98.
[14] 李敏, 罗德强, 江学海, 周维佳, 姬广梅, 王学鸿, 李树杏. 低温寡日照条件下不同类型杂交稻品种的生态适应性[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 47-52.
[15] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 53-62.