Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (3): 404-414    DOI: 10.3785/j.issn.1008-9209.2020.09.231
农业工程     
基于时间序列全极化合成孔径雷达的水稻物候期反演
李宏宇1(),李坤2,3,4(),杨知5
1.上海市测绘院,上海 200063
2.中国科学院空天信息创新研究院,北京 100101
3.中科卫星应用德清研究院/浙江省微波目标特性测量与遥感重点实验室,浙江 湖州 313200
4.中国科学院大学,北京 100049
5.中国电力科学研究院有限公司,北京 100192
Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data
Hongyu LI1(),Kun LI2,3,4(),Zhi YANG5
1.Shanghai Surveying and Mapping Institute, Shanghai 200063, China
2.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
3.China Science and Technology Satellite Application Deqing Research Institute/Zhejiang Key Laboratory of Microwave Target Characteristic Measurement and Remote Sensing, Huzhou 313200, Zhejiang, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
5.China Electric Power Research Institute Co. , Ltd. , Beijing 100192, China
 全文: PDF(4423 KB)   HTML
摘要:

基于多时相全极化合成孔径雷达(synthetic aperture radar, SAR)数据,对江苏省淮安市金湖县附近地区水稻进行种类识别和关键物候期反演;通过提取分析水稻极化特征参数时序曲线变化特征,筛选出对水稻物候变化敏感的极化特征参数,构造出一个能体现水稻生长关键物候变化特征的雷达物候指数(radar phenology index, RPI),利用Savitzky-Golay(S-G)滤波重构后的雷达物候指数反演水稻关键物候期。结果表明:粳稻和籼稻在极化参数香农熵的响应方面差异较大,利用香农熵可将籼稻和粳稻较好地识别出来,识别精度分别为92.38%和95.10%,取得了较好的识别效果;利用曲线导数法提取水稻时序雷达物候指数曲线特征点,识别出水稻3个关键物候期,且识别出的水稻关键物候期日期与野外地面调查获得的日期相差全部在±16 d以内,说明利用雷达物候指数可以较准确地反演出水稻关键物候期。

关键词: 全极化合成孔径雷达水稻物候期反演雷达物候指数    
Abstract:

Rice species identification and the retrieval of key phenological stages were processed in the area around Jinhu County, Huai’an City, Jiangsu Province, based on multi-temporal full-polarization synthetic aperture radar (SAR) data. By extracting and analyzing the change characteristics of the time-series curve of the polarization characteristic parameters of rice, the polarization characteristic parameters that are sensitive to the changes of rice phenology were screened out, and a radar phenology index (RPI) that can reflect the key phenological changes of rice growth was constructed, and then was reconstructed by Savitzky-Golay (S-G) filter. The key phenological stages of rice were retrieved by the RPI. The results showed that the response of the polarization parameter Shannon entropy was quite different between japonica rice and indica rice, indicating that Shannon entropy could be used to identify indica rice and japonica rice with precisions of 92.38% and 95.10%, respectively; the curve derivative method was used to extract the characteristic points of the time-series RPI curve of rice, and three key phenological stages of rice were identified. The dates of the identified key phenological stages of rice were all within ±16 d from the date obtained in the field survey. The above results show that the use of RPI can more accurately retrieve the key phenological stages of rice.

Key words: full-polarization synthetic aperture radar    retrieval of rice phenology    radar phenology index
收稿日期: 2020-09-23 出版日期: 2021-06-25
CLC:  TP 79  
基金资助: 国家自然科学基金面上项目“多时相极化SAR与作物生长模型耦合的区域水稻产量差当季估算方法研究”(41871272)
通讯作者: 李坤     E-mail: lihongyu19931222@163.com;likun@radi.ac.cn
作者简介: 李宏宇(https://orcid.org/0000-0002-8597-9953),E-mail:lihongyu19931222@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李宏宇
李坤
杨知

引用本文:

李宏宇,李坤,杨知. 基于时间序列全极化合成孔径雷达的水稻物候期反演[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 404-414.

Hongyu LI,Kun LI,Zhi YANG. Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 404-414.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.09.231        http://www.zjujournals.com/agr/CN/Y2021/V47/I3/404

图1  2015年9月16日RADARSAT-2全极化SAR数据RGB假彩色合成图R:HH极化;G:HV极化;B:VV极化。

获取日期

Date acquired

DoY/d

粳稻物候期

Japonica rice phenology stage

分辨率(方位向×距离向)

Resolution (azimuth×range)/m

2015-06-12163幼苗期 Seedling stage5.2×7.6
2015-07-30211分蘖末期 Late tillering stage5.2×7.6
2015-08-23235孕穗期 Booting stage5.2×7.6
2015-09-16259抽穗扬花期 Heading and flowering stage5.2×7.6
2015-10-10283乳熟期 Milky stage5.2×7.6
2015-11-03307完熟期 Maturity stage5.2×7.6
表1  获取的RADARSAT-2全极化SAR数据参数

特征参数

Characteristic parameter

文献

Reference

Yamaguchi3/4极化分解分量

Yamaguchi3/4 polarization decomposition

components

[14]

An&Yang3/4极化分解分量

An&Yang3/4 polarization decomposition components

[15]

H/A/Alpha极化分解多样性指数

H/A/Alpha polarization decomposition diversity

index

[16-20]

Freeman-Durden极化分解分量

Freeman-Durden polarization decomposition

components

[21]

VAN ZYL极化分解分量

VAN ZYL polarization decomposition components

[22]
相干矩阵元素 Coherent matrix elements[23-24]
雷达植被指数 Radar vegetation index[25]
冠层结构指数 Canopy structure index[26]

后向散射系数及其比值

Backscattering coefficient and its ratio

[27]
表2  全极化SAR部分特征参数提取列表
图2  典型地物极化特征参数变化特征
图3  水稻种类识别的决策树算法
图4  研究区地物识别结果图

类别

Category

水体

Water

body

蟹塘

Crab

pond

浅滩

Shoal

城市

Town

森林

Forest

籼稻

Indica

rice

粳稻

Japonica

rice

总数

Total

用户精度

User

accuracy/%

水体Water body5 85944000005 26999.25
蟹塘 Crab pond371 1070000024896.77
浅滩 Shoal001 459003302 97597.79
城市 Town087751 238173442 54685.09
森林 Forest0003669824543 92985.96
籼稻 Indica rice026162875 4643364 95692.38
粳稻 Japonica rice07911200143 9762 83595.10
总数 Total5 8961 3431 6461 2768025 5694 37022 758

制图精度

Drawing accuracy/%

99.3782.4388.6497.0287.0398.1190.98
总体精度 Overall accuracy/%94.73
Kappa系数 Kappa coefficient0.93
表3  基于多时相全极化SAR数据的研究区地物分类混淆矩阵
图5  第10号样本田2015年水稻RPI插值处理前后对比图
图6  第10号样本田时序RPI经S-G滤波处理前后对比图
图7  粳稻生长的各个物候阶段(10号样本田)a:出芽期至幼苗期;b:分蘖初期至分蘖中期;c:拔节期至孕穗期;d:抽穗扬花期;e:乳熟期至完熟期。
图8  水稻样本田识别结果与野外观测物候比较
图9  19个水稻样本田获取的水稻物候反演结果与观测值对比分布图
1 国家统计局.关于2017年粮食产量的公告.[2020-09-22]. .
National Bureau of Statistics. Announcement on Grain Production in 2017. [2020-09-22].
2 姚成,赵晋陵.基于时序HJ-CCD影像的区域尺度水稻提取方法研究.南京农业大学学报,2015,38(6):1023-1029. DOI:10.7685/j.issn.1000-2030.2015.06.023
YAO C, ZHAO J L. Identifying the spatial-temporal characteristics of paddy rice using time-series HJ-CCD imagery. Journal of Nanjing Agricultural University, 2015,38(6):1023-1029. (in Chinese with English abstract)
doi: 10.7685/j.issn.1000-2030.2015.06.023
3 孙佩军,张锦水,潘耀忠,等.构建时空融合模型进行水稻遥感识别.遥感学报,2016,20(2):328-343. DOI:10.11834/jrs.20165008
SUN P J, ZHANG J S, PAN Y Z, et al. Temporal spatial fusion model for area extraction of paddy rice using multi-temporal remote sensing images. Journal of Remote Sensing, 2016,20(2):328-343. (in Chinese with English abstract)
doi: 10.11834/jrs.20165008
4 BERNARDIS C D, VICENTE-GUIJALBA F, MARTINEZ-MARIN T, et al. Contribution to real-time estimation of crop phenological states in a dynamical framework based on NDVI time series: data fusion with SAR and temperature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3512-3523. DOI:10.1109/JSTARS.2016.2539498
doi: 10.1109/JSTARS.2016.2539498
5 PHAN H, LE TOAN T, BOUVET A, et al. Mapping of rice varieties and sowing date using X-band SAR data. Sensors, 2018,18:316. DOI:10.3390/s18010316
doi: 10.3390/s18010316
6 INOUE Y, SAKAIYA E, WANG C Z. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment, 2014,140:257-266. DOI:10.1016/j.rse.2013.09.001
doi: 10.1016/j.rse.2013.09.001
7 邵芸,郭华东,范湘涛,等.水稻时域散射特征分析及其应用研究.遥感学报,2001,5(5):340-345.
SHAO Y, GUO H D, FAN X T, et al. Studies on rice backscatter signatures in time domain and its applications. Journal of Remote Sensing, 2001,5(5):340-345. (in Chinese with English abstract)
8 LE TOAN T, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(2):403-411. DOI:10.1109/36.134089
doi: 10.1109/36.134089
9 谭炳香,李增元,李秉柏,等.单时相双极化ENVISAT ASAR数据水稻识别.农业工程学报,2006,22(12):121-127.
TAN B X, LI Z Y, LI B B, et al. Rice field mapping and monitoring using singe-temporal and dual polarized ENVISAT ASAR data. Transactions of the CSAE, 2006,22(12):121-127. (in Chinese with English abstract)
10 李坤,邵芸,张风丽.基于RadarSat-2全极化数据的水稻识别.遥感技术与应用,2012,27(1):86-93. DOI:10.11873/j.issn.1004-0323.2012.1.86
LI K, SHAO Y, ZHANG F L. Extraction of rice based on quad-polarization RadarSat-2 data. Remote Sensing Technology and Application, 2012,27(1):86-93. (in Chinese with English abstract)
doi: 10.11873/j.issn.1004-0323.2012.1.86
11 LOPEZ-SANCHEZ J M, CLOUDE S R, BALLESTER-BERMAN J D. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(7):2695-2709. DOI:10.1109/TGRS.2011.2176740
doi: 10.1109/TGRS.2011.2176740
12 PACHECO A, MCNAIRN H, LI Y F, et al. Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology: Proceedings of the SPIE. Edinburgh, UK: Remote Sensing. Remote Sensing for Agriculture, Ecosystems, and Hydrology ⅩⅧ, 2016. DOI:10.1117/12.2240789
doi: 10.1117/12.2240789
13 杨知.基于极化SAR的水稻物候期监测与参数反演研究.北京:中国科学院大学,2017.
YANG Z. Rice phenology estimation and parameter retrieval based on polarmetric synthetic aperture radar (SAR). Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese with English abstract)
14 YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(8):1699-1706. DOI:10.1109/TGRS.2005.852084
doi: 10.1109/TGRS.2005.852084
15 YANG J, PENG Y N, YAMAGUCHI Y, et al. On Huynen’s decomposition of a Kennaugh matrix. IEEE Geoscience & Remote Sensing Letters, 2006,3(3):369-372. DOI:10.1109/LGRS.2006.873229
doi: 10.1109/LGRS.2006.873229
16 ALLAIN S, FERRO-FAMIL L, POTTIER E. Two novel surface model based inversion algorithms using multi-frequency polSAR data: IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. New York, US: IEEE, 2004:823-826. DOI:10.1109/IGARSS.2004.1368531
doi: 10.1109/IGARSS.2004.1368531
17 ALLAIN S, LOPEZ-MARTINEZ C, FERRO-FAMIL L, et al. New eigenvalue-based parameter for natural media characterization: European Radar Conference, 2005. New York, US: IEEE, 2005. DOI:10.1109/EURAD.2005.1605594
doi: 10.1109/EURAD.2005.1605594
18 RéFRéGIER P, MORIO J. Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations. Journal of the Optical Society of America A: Optics Image Science & Vision, 2006,23(12):3036-3044. DOI:10.1364/JOSAA.23.003036
doi: 10.1364/JOSAA.23.003036
19 VAN ZYL J J, ZEBKER H A, ELACHI C. Imaging radar polarization signatures: theory and observation. Radio Science, 1987,22(4):529-543.
20 DURDEN S L, VAN ZYL J J, ZEBKER H A. The unpolarized component in polarimetric radar observations of forested areas. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(2):268-271. DOI:10.1109/36.46706
doi: 10.1109/36.46706
21 FREEMAN A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(8):2583-2592. DOI:10.1109/TGRS.2007.897929
doi: 10.1109/TGRS.2007.897929
22 VAN ZYL J J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data: Proceedings of the SPIE: the International Society for Optical Engineering. [S. l.: s. n.], 1993:184-191. DOI:10.1117/12.140615
doi: 10.1117/12.140615
23 LüNEBURG E. Radar polarimetry: a revision of basic concepts. Workshop ‘Direct and Indirect Methods in Scattering Theory’. Gebze, Tuerkei, 25.-29.9.96. DLR, 1995. [S. l.]: LIDO-Berichtsjahr, 1996.
24 LUNEBURG E. Polarimetric target matrix decompositions and the ‘Karhunen-Loeve expansion’: IEEE International Geoscience & Remote Sensing Symposium. New York, US: IEEE, 1999. DOI:10.1109/igarss.1999.771608
doi: 10.1109/igarss.1999.771608
25 LING F, LI Z, CHEN E, et al. Comparison of ALOS PALSAR RVI and Landsat TM NDVI for forest area mapping: 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar. New York, US: IEEE, 2009. DOI:10.1109/APSAR.2009.5374137
doi: 10.1109/APSAR.2009.5374137
26 POPE K O, REY-BENAYAS J M, PARIS J F. Radar remote sensing of forest and wetland ecosystems in the Central American tropics. Remote Sensing of Environment, 1994,48(2):205-219. DOI:10.1016/0034-4257(94)90142-2
doi: 10.1016/0034-4257(94)90142-2
27 BOERNER W M, YAN W L, XI A Q, et al. On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen’s polarization fork concept, and its extension to the partially polarized case. Proceedings of the IEEE, 1991,79(10):1538-1550. DOI:10.1109/5.104228
doi: 10.1109/5.104228
28 SAVITZKY A, GOLAY M J E. Smoothing and diffe-rentiation of data by simplified least squares procedures. Analytical Chemistry, 1964,36(8):1627-1639.
29 CHEN J, J?NSSON P, TAMURA M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 2004,91(3/4):332-344. DOI:10.1016/j.rse.2004.03.014
doi: 10.1016/j.rse.2004.03.014
30 黄耀欢,王建华,江东,等.利用S-G滤波进行MODIS-EVI时间序列数据重构.武汉大学学报(信息科学版),2009,34(12):1440-1443. DOI:10.13203/j.whugis2009.12.009
HUANG Y H, WANG J H, JIANG D, et al. Reconstruction of MODIS-EVI time-series data with S-G filter. Geomatics and Information Science of Wuhan University, 2009,34(12):1440-1443. (in Chinese with English abstract)
doi: 10.13203/j.whugis2009.12.009
31 杨振忠.基于遥感数据的水稻生育期识别研究.武汉:武汉大学,2019.
YANG Z Z. Identification of growth stages in rice using remote sensing data. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)
32 何泽.基于多时相RADARSAT-2数据的水稻物候监测.成都:电子科技大学,2019.
HE Z. Monitoring rice phenology based on multi-temporal RADARSAT-1 datasets. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese with English abstract)
[1] 尹华锋, 苏程, 冯存均, 李玉琴, 黄智才, 章孝灿. 基于样本知识挖掘的高分辨率遥感图像水稻种植信息提取方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 765-774.
[2] 胡根生,吴问天,罗菊花,黄文江,梁栋,黄林生. 结合HJ卫星影像和最小二乘孪生支持向量机的小麦蚜虫遥感监测[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 211-219.