Most Downloaded Articles

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
Multi-target tracking of vehicles based on optimized DeepSort
Li-sheng JIN,Qiang HUA,Bai-cang GUO,Xian-yi XIE,Fu-gang YAN,Bo-tao WU
Journal of ZheJiang University (Engineering Science)    2021, 55 (6): 1056-1064.   DOI: 10.3785/j.issn.1008.973X.2021.06.005
Abstract   HTML PDF (1014KB) ( 951 )  

A front multi-vehicle target tracking algorithm optimized by DeepSort was proposed in order to improve the awareness of autonomous vehicles to the surrounding environment. Gaussian YOLO v3 model was adopted as the front-end target detector, and training was based on DarkNet-53 backbone network. Gaussian YOLO v3-Vehicle, a detector specially designed for vehicles was obtained, which improved the vehicle detection accuracy by 3%. The augmented VeRi data set was proposed to conduct the re-recognition pre-training in order to overcome the shortcomings that the traditional pre-training model doesn't target vehicles. A new loss function combining the central loss function and the cross entropy loss function was proposed, which can make the target features extracted by the network become better in-class aggregation and inter-class resolution. Actual road videos in different environments were collected in the test part, and CLEAR MOT evaluation index was used for performance evaluation. Results showed a 1% increase in tracking accuracy and a 4% reduction in identity switching times compared with the benchmark DeepSort YOLO v3.

Table and Figures | Reference | Related Articles | Metrics
Remaining useful life prediction of turbofan engine based on similarity in multiple time scales
Yu-hui XU,Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA
Journal of ZheJiang University (Engineering Science)    2021, 55 (10): 1937-1947.   DOI: 10.3785/j.issn.1008-973X.2021.10.016
Abstract   HTML PDF (1382KB) ( 741 )  

A novel method based on health index similarity in multiple time scales with autoencoder (AE MTS-HI) was proposed aiming at the shortage of the traditional similarity-based method in extracting health index and similarity matching. Autoencoder was applied to construct the health index based on monitoring data, which can minimize the loss of nonlinear information. The health index in multiple time scales was developed for similarity matching by considering the fluctuation of the length of test degradation trajectories. The method can remove the accuracy limitation caused by fixed time scales and enhance the prediction robustness. Performance of the proposed method was evaluated on public turbofan engines datasets. Results demonstrate that the method can improve the remaining useful life (RUL) prediction accuracy and provide stable support for predictive maintenance.

Table and Figures | Reference | Related Articles | Metrics
Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D
Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU
Journal of ZheJiang University (Engineering Science)    2022, 56 (8): 1485-1494.   DOI: 10.3785/j.issn.1008-973X.2022.08.002
Abstract   HTML PDF (1589KB) ( 714 )  

Traditional and new geotechnical engineering problems such as compressed air energy storage, intercepting water with compressed air, carbon dioxide sequestration and oil and gas underground reserve project are all involving air-water two-phase flow and stress coupling problems. For this engineering reality, based on the weak coupling theory of gas-water two-phase seepage and stress in unsaturated soil, a air-water two-phase percolation-stress coupling calculation program based on coupled TOUGH2 and FLAC3D was developed. The calculation program can simulate real air-water two phase flow, and can investigate the gas-water interaction of seepage process. The calculation program considers the direct interaction between gas-water two-phase seepage and soil skeleton deformation, reflects the process of porosity, permeability, capillary pressure and the change of soil physical and mechanical parameters, and achieve a more perfect gas-water two-phase seepage-stress coupling analysis. Furthermore, by comparing with classical drainage test and model test, it is verified that the program can accurately simulate the gas-water two-phase flow-stress interaction.

Table and Figures | Reference | Related Articles | Metrics
Review of CO2 direct air capture adsorbents
Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG
Journal of ZheJiang University (Engineering Science)    2022, 56 (3): 462-475.   DOI: 10.3785/j.issn.1008-973X.2022.03.005
Abstract   HTML PDF (1561KB) ( 658 )  

The research progress of direct air capture CO2 adsorbents was reviewed. The advantages and disadvantages of alkali/alkaline metal based adsorbents, metal organic framework adsorbents, amine loaded adsorbents and moisture swing adsorbents were compared. Meanwhile, the properties of adsorbents from the aspects of adsorption capacity and amine efficiency, kinetics and supporters, regeneration mode and energy consumption, thermal stability and resistance to degradation were evaluated. Additionally, the related engineering demonstration projects and economic evaluation were briefly discussed. Finally, the problems existing in the current research were summarized, and the future research direction was prospected.

Table and Figures | Reference | Related Articles | Metrics
Garbage image classification algorithm based on improved MobileNet v2
Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG
Journal of ZheJiang University (Engineering Science)    2021, 55 (8): 1490-1499.   DOI: 10.3785/j.issn.1008-973X.2021.08.010
Abstract   HTML PDF (1439KB) ( 641 )  

A garbage image classification method based on improved MobileNet v2 was proposed aiming at the problems of poor real-time performance and low classification accuracy of existing garbage image classification models. A lightweight feature extraction network based on MobileNet v2 was constructed. The parameter numbers of the model were reduced by adjusting its width factor, channel and spatial attention modules were embedded in the model to enhance the network's ability to refine features, a multi-scale feature fusion structure was designed to enhance the adaptability of the network to scale, and transfer learning was used to optimize the model parameters to further improve the model accuracy. Experimental results show that the average accuracy of the algorithm on the self built dataset was 94.6%, which was 2.0%, 3.4%, 3.2%, 2.3% and 1.2% higher than that of MobileNet v2, VGG16, GoogleNet, ResNet50 and ResNet101 models, respectively. The proposed algorithm achieved good performance in two public image classification datasets, CIFAR-100 and tiny-ImageNet. The parameter numbers of the model was only 0.83 M, which was about 2/5 of the basic model. The single inference on edge device JETSON TX2 took 68 ms, which proved the improvement of inference speed and prediction accuracy.

Table and Figures | Reference | Related Articles | Metrics
Compound fault decoupling diagnosis method based on improved Transformer
Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU
Journal of ZheJiang University (Engineering Science)    2023, 57 (5): 855-864.   DOI: 10.3785/j.issn.1008-973X.2023.05.001
Abstract   HTML PDF (2584KB) ( 637 )  

Most of the compound fault diagnosis methods regard the compound fault as a new single fault type, ignoring the interaction of internal single faults, and the fault analysis is vague in granularity and poor in interpretation. An improved Transformer-based compound fault decoupling diagnosis method was proposed for industrial environments with very little compound fault data. The diagnosis process included pre-processing, feature extraction and fault decoupling. With introducing the decoder of the Transformer, the cross-attention mechanism enables each single fault label to adaptively in the extracted feature layer focus on the discriminative feature region corresponding to the fault feature and predicts the output probability to achieve compound fault decoupling. Compound fault tests were designed to verify the effectiveness of the method compared with the advanced algorithms. The results showed that the proposed method had high diagnostic accuracy with a small number of single fault training samples and a very small number of compound fault training samples. The compound fault diagnosis accuracy reached 88.29% when the training set contained only 5 compound fault samples. Thus the new method has a significant advantage over other methods.

Table and Figures | Reference | Related Articles | Metrics
Framework and key technologies of digital twin system cyber security under perspective of bionics
Lin-li LI,Fu GU,Hao LI,Xin-jian GU,Guo-fu LUO,Zhi-qiang WU,Yi-jin GANG
Journal of ZheJiang University (Engineering Science)    2022, 56 (3): 419-435.   DOI: 10.3785/j.issn.1008-973X.2022.03.001
Abstract   HTML PDF (1417KB) ( 581 )  

In order to promote the transformation of industrial cyber security defense mode from static passive defense to active defense, and alleviate the contradiction between the serious shortage of security experts and the sharp increase of cyber security demands, a cyber security active defense system framework of digital twin system was built from the perspective of bionics, and then five kinds of key technologies focusing on active defense were proposed based on the digital twin security brain (DTSB), including security data interaction and systems collaborative defense based on cloud-edge collaboration, cyber security active defense model of parallel digital twin system, situation awareness of parallel digital twin systems based on digital twin security brain, active defense and control technical framework for digital twin system based on immune system, and anti-attack intelligent recognition of digital twin system based on artificial intelligence. A case study of a digital twin workshop was given to demonstrate the successful application of digital twin cyber security in smart manufacturing.

Table and Figures | Reference | Related Articles | Metrics
Review of digital design and digital twin of industrial boiler
Zhe-wu CHENG,Shui-guang TONG,Zhe-ming TONG,Qin-guo ZHANG
Journal of ZheJiang University (Engineering Science)    2021, 55 (8): 1518-1528.   DOI: 10.3785/j.issn.1008-973X.2021.08.013
Abstract   HTML PDF (915KB) ( 531 )  

The characteristics of industrial boiler design and the necessity of introducing digital twin technology were summarized. The development and research status of digital design technology for industrial boilers were comprehensively summarized, and it was proposed that the digital design technology of a new generation of industrial boilers, with the design process optimization as the core and the digital twin as the foundation, was the key to improve the design capability and comprehensive performance of industrial boilers. The application characteristics of digital twin technology in industrial boiler design were analyzed, and three key technical problems of digital twin driven industrial boiler design were summarized: digital twin modeling technology for the expression of multiple information in the design process of industrial boiler; design process optimization technology based on human-computer interaction and virtual reality intelligent verification; industrial boiler digital twin data management technology for the full life cycle. On this basis, a digital twin driven digital design technology framework for industrial boilers was proposed, which was expected to provide ideas and valuable references for the research and application of digital design technology for high-performance industrial boilers.

Table and Figures | Reference | Related Articles | Metrics
Review of blockchain data security management and privacy protection technology research
Xiu-bo LIANG,Jun-han WU,Yu ZHAO,Ke-ting YIN
Journal of ZheJiang University (Engineering Science)    2022, 56 (1): 1-15.   DOI: 10.3785/j.issn.1008-973X.2022.01.001
Abstract   HTML PDF (790KB) ( 514 )  

The researches on data security management and privacy protection technologies at home and abroad were analyzed and summarized aiming at current problems in blockchain security, such as unreasonable data management mode, unreliable data sharing scheme, smart contract vulnerabilities not easily fixed and incomplete privacy protection of multiple types of data. Various security problems and reasonable solutions in current blockchain systems were outlined from four aspects: data storage security, data privacy security, data access security and data sharing security. The challenges and future research directions of data security in blockchain were discussed. Some reference for the future work of researchers was provided in the field of blockchain security.

Table and Figures | Reference | Related Articles | Metrics
Review of image-based river surface velocimetry research
Dan YANG,Guang-jun SHAO,Wei-fei HU,Guo-fu LIU,Jia-ming LIANG,Han-lin WANG,Chao XU
Journal of ZheJiang University (Engineering Science)    2021, 55 (9): 1752-1763.   DOI: 10.3785/j.issn.1008-973X.2021.09.017
Abstract   HTML PDF (1506KB) ( 507 )  

In order to solve the problems of difficult equipment deployment, velocity measurement and river monitoring in flooding environment, a series of image velocimetry techniques from particle image velocimetry (PIV) to deep learning methods were outlined based on non-invasive, low-cost and efficient measurement means in conjunction with nearly ten years of research in the field of river monitoring. The mechanism and issues of river surface velocimetry were discussed in the sections of image acquisition, image analysis, and image post-processing. By comparing and summarizing the differences of each method, the requirement of the existing methods were proposed, aiming to improve the river flow velocity measurement efficiency.

Table and Figures | Reference | Related Articles | Metrics
Surface defect detection algorithm of electronic components based on improved YOLOv5
Yao ZENG,Fa-qin GAO
Journal of ZheJiang University (Engineering Science)    2023, 57 (3): 455-465.   DOI: 10.3785/j.issn.1008-973X.2023.03.003
Abstract   HTML PDF (1697KB) ( 507 )  

For the poor real-time detection capability of the current object detection model in the production environment of electronic components, GhostNet was used to replace the backbone network of YOLOv5. And for the existence of small objects and objects with large scale changes on the surface defects of electronic components, a coordinate attention module was added to the YOLOv5 backbone network, which enhanced the sensory field while avoiding the consumption of large computational resources. The coordinate information was embedded into the channel attention to improve the object localization of the model. The feature pyramid networks (FPN) structure in the YOLOv5 feature fusion module was replaced with a weighted bi-directional feature pyramid network structure, to enhance the fusion capability of multi-scale weighted features. Experimental results on the self-made defective electronic component dataset showed that the improved GCB-YOLOv5 model achieved an average accuracy of 93% and an average detection time of 33.2 ms, which improved the average accuracy by 15.0% and the average time by 7 ms compared with the original YOLOv5 model. And the improved model can meet the requirements of both accuracy and speed of electronic component surface defect detection.

Table and Figures | Reference | Related Articles | Metrics
Review on metal-oxide materials applied in planar perovskite solar cells
Li XIAO,Yuan-hao CHEN,Chang-xing LIANG,Jian-xi YAO
Journal of ZheJiang University (Engineering Science)    2021, 55 (8): 1576-1584.   DOI: 10.3785/j.issn.1008-973X.2021.08.019
Abstract   HTML PDF (1043KB) ( 493 )  

As the carrier transport layer in planar perovskite solar cells, metal oxide films have important influence on device properties. The requirements of metal oxide films for planar solar cells in the respect of the morphology, electrical, optical, chemical and thermal properties were systematically overviewed. Worthwhile, the materials characteristic and representative work involving the most promising metal oxide film work as electron transport layer or hole transport layer material were summarized. Research progress of adopting methods such as element doping of metal oxides, surface modification of film and design of composite metal oxide film to improving film mobility, minimizing surface defects and adjusting energy level were proposed. Moreover, the future requirement and the improvement direction of metal oxide thin film deposition technology were discussed after summarizing the advantages and disadvantages of the deposition technology. Finally, the application of low-temperature deposited metal oxide films in flexible devices was expected.

Table and Figures | Reference | Related Articles | Metrics
New method for news recommendation based on Transformer and knowledge graph
Li-zhou FENG,Yang YANG,You-wei WANG,Gui-jun YANG
Journal of ZheJiang University (Engineering Science)    2023, 57 (1): 133-143.   DOI: 10.3785/j.issn.1008-973X.2023.01.014
Abstract   HTML PDF (1590KB) ( 470 )  

A news recommendation method based on Transformer and knowledge graph was proposed to increase the auxiliary information and improve the prediction accuracy. The self-attention mechanism was used to obtain the connection between news words and news entities in order to combine news semantic information and entity information. The additive attention mechanism was employed to capture the influence of words and entities on news representation. Transformer was introduced to pick up the correlation information between clicked news of user and capture the change of user interest over time by considering the time-series characteristics of user preference for news. High-order structural information in knowledge graphs was used to fuse adjacent entities of the candidate news and enhance the integrity of the information contained in the candidate news embedding vector. The comparison experiments with five typical recommendation methods on two versions of the MIND news dataset show that the introduction of attention mechanism, Transformer and knowledge graph can improve the performance of the algorithm on news recommendation.

Table and Figures | Reference | Related Articles | Metrics
Multi-scale object detection algorithm for recycled objects based on rotating block positioning
Hong-zhao DONG,Hao-jie FANG,Nan ZHANG
Journal of ZheJiang University (Engineering Science)    2022, 56 (1): 16-25.   DOI: 10.3785/j.issn.1008-973X.2022.01.002
Abstract   HTML PDF (1360KB) ( 464 )  

An improved algorithm MR2-YOLOV5 based on YOLOv5 was proposed aiming at the problem that the traditional target detection algorithm did not consider the diversity of the target shape scale in the actual sorting scene and could not obtain the rotation angle information. Precise rotation angle detection was completed by adding angle prediction branches and introducing angle classification method of ring smooth label (CSL). The target detection layer was added to improve the detection ability of different scales of the model. Transformer attention mechanism was used at the end of the backbone network to give different weights to each channel and strengthen feature extraction. The feature graphs of different levels extracted from the backbone network were input into the BiFPN network structure to conduct multi-scale feature fusion. The experimental results showed that the mean average precision (mAP) of MR2-YOLOV5 on the self-made data set was 90.56%, which was 5.36% higher than that of YOLOv5s with only angle prediction branch. Categories and rotation angles can be recognized for objects such as occlusion, transparent and deformation. The detection time of single frame is 0.02-0.03 s, which meets the performance requirements of target detection algorithm for sorting scenes.

Table and Figures | Reference | Related Articles | Metrics
Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN
Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG
Journal of ZheJiang University (Engineering Science)    2022, 56 (2): 213-224.   DOI: 10.3785/j.issn.1008-973X.2022.02.001
Abstract   HTML PDF (1464KB) ( 455 )  

An underwater image enhancement algorithm was proposed based on generative adversarial networks (GAN) and improved convolutional neural networks (CNN) in order to solve the problems of haze blurring and color distortion of underwater image. Generative adversarial network was used to synthesize underwater images to effectively expand the paired underwater data set. The underwater image was decomposed by multi-scale wavelet transform without losing the feature resolution. Then, combined with CNN, the compact learning method was used to extract features from multi-scale images, and skip connection was used to prevent gradient dispersion. Finally, the fog blur effect of the underwater image was resolved. In order to improve the color correction ability of the model and overcome the problem of color distortion of underwater images, the correlation between different channels of color images was learned by using the style cost function. Experimental results show that, in subjective visual and objective indicators, the proposed algorithm is superior to the contrast algorithm in comprehensive performance and robustness.

Table and Figures | Reference | Related Articles | Metrics
Vibration measurement of ball screws used in automobile braking systems
Wen-tao LIU,Kun ZHAO,Jiu-gen WANG,Li SONG
Journal of ZheJiang University (Engineering Science)    2021, 55 (8): 1529-1537.   DOI: 10.3785/j.issn.1008-973X.2021.08.014
Abstract   HTML PDF (1675KB) ( 450 )  

The vibration detection technology of ball screws used in automobile braking systems was studied. The vibration detection method of ball screws was proposed and the vibration detection equipment was developed, according to structure, size and motion characteristics of ball screws used in automobile braking systems. The expressions of balls’ rotation and revolution velocities and frequency of balls passing through reversers were derived under the condition of nut rotation based on kinematics. Then, the axial and radial vibration of ball screws used in an electric power braking system was measured under the conditions of different nut rotation speeds. The time-frequency distribution characteristics of vibration amplitude were analyzed, and results showed that the measured ball screws had prominent magnitudes near the frequency of balls passing through reversers and its multiplication orders. Lastly, the vibration levels of ball screws were evaluated by using root mean square (RMS) values in octave bands, and the energy distribution characteristics of vibration were obtained in octave bands under different nut rotation speed conditions.

Table and Figures | Reference | Related Articles | Metrics
Review of Chinese font style transfer research based on deep learning
Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE
Journal of ZheJiang University (Engineering Science)    2022, 56 (3): 510-519, 530.   DOI: 10.3785/j.issn.1008-973X.2022.03.010
Abstract   HTML PDF (874KB) ( 447 )  

The research works of Chinese font style transfer were classified according to different stages of research development. The traditional methods were briefly reviewed and the deep learning-based methods were combed and analyzed. The commonly used open data sets and evaluation criteria were introduced. The future research trends were expected from four aspects, which were to improve the generation quality, enhance personalized differences, reduce the number of training samples, and learn calligraphy font style.

Table and Figures | Reference | Related Articles | Metrics
Multi-agent pursuit and evasion games based on improved reinforcement learning
Ya-li XUE,Jin-ze YE,Han-yan LI
Journal of ZheJiang University (Engineering Science)    2023, 57 (8): 1479-1486.   DOI: 10.3785/j.issn.1008-973X.2023.08.001
Abstract   HTML PDF (1158KB) ( 440 )  

A multi-agent reinforcement learning algorithm based on priority experience replay and decomposed reward function was proposed in multi-agent pursuit and evasion games. Firstly, multi-agent twin delayed deep deterministic policygradient algorithm (MATD3) algorithm based on multi-agent deep deterministic policy gradient algorithm (MADDPG) and twin delayed deep deterministic policy gradient algorithm (TD3) was proposed. Secondly, the priority experience replay was proposed to determine the priority of experience and sample the experience with high reward, aiming at the problem that the reward function is almost sparse in the multi-agent pursuit and evasion problem. In addition, a decomposed reward function was designed to divide multi-agent rewards into individual rewards and joint rewards to maximize the global and local rewards. Finally, a simulation experiment was designed based on DEPER-MATD3. Comparison with other algorithms showed that DEPER-MATD3 algorithm solved the over-estimation problem, and the time consumption was improved compared with MATD3 algorithm. In the decomposed reward function environment, the global mean rewards of the pursuers were improved, and the pursuers had a greater probability of chasing the evader.

Table and Figures | Reference | Related Articles | Metrics
Indoor positioning method of UAV based on improved MSCKF algorithm
Si-peng WANG,Chang-ping DU,Guang-hua SONG,Yao ZHENG
Journal of ZheJiang University (Engineering Science)    2022, 56 (4): 711-717.   DOI: 10.3785/j.issn.1008-973X.2022.04.010
Abstract   HTML PDF (992KB) ( 432 )  

An indoor positioning method of unmanned aerial vehicle (UAV) based on improved multi-state constraint Kalman filter (MSCKF) was proposed aiming at the problem that the indoor positioning of UAV is prone to drift. A high robustness and low delay detection method was proposed under the framework of MSCKF. The pose of UAV was calculated with the help of the known positions of the mark points in world coordinate system. Then inertial measurement unit (IMU) data and monocular vision data fusion and UAV pose correction were realized. The proposed positioning method was tested. The simulation results show that the positioning error of the proposed method was within 0.266 m, and the positioning accuracy was improved by more than 54.6% compared to OpenVins and LARVIO.

Table and Figures | Reference | Related Articles | Metrics
Calculation and prediction of flue gas residence time from CFB municipal solid waste incinerator
Xiao-qing LIN,Yu-xuan YING,Hong YU,Xiao-dong LI,Jian-hua YAN
Journal of ZheJiang University (Engineering Science)    2022, 56 (8): 1578-1587.   DOI: 10.3785/j.issn.1008-973X.2022.08.012
Abstract   HTML PDF (1591KB) ( 420 )  

Ensuring that the flue gas in the furnace stays within the temperature range of no less than 850 ℃ for at least 2 s contributes to the steady municipal solid waste (MSW) incineration, and the reduction of secondary pollution. However, at present, it is difficult to quantitatively calculate and predict the residence time of flue gas in the high temperature area by only using the thermocouple for qualitative evaluation. Based on the thermodynamic calculation, correlation analysis of practical operation parameters, and a variety of machine learning algorithms (backpropagation neural network, recurrent neural network, and random forest regression), the residence time of flue gas in high-temperature areas (>850 ℃) was calculated, correlation analysis of key operation parameters was conducted, and the prediction model of residence time was constructed, aiming at a typical MSW circulating fluidized bed boiler in China. Results revealed that 10 key operating parameters, e.g. section temperature of the furnace, temperature and pressure of primary air and secondary air, etc., had a strong correlation and predictability with the high-temperature flue gas residence time. Moreover, the model of the recurrent neural network was relatively optimal, with a higher fitting degree and accuracy. Specifically, the mean square error (MSE) was 0.11626, and the average absolute error between the predicted value and real value was 1.174%. Research enabled the prediction of flue gas temperature variation in high-temperature areas, helped optimize the MSW incineration, and contributed to the advanced control of pollutant emission reduction.

Table and Figures | Reference | Related Articles | Metrics