A novel method based on health index similarity in multiple time scales with autoencoder (AE MTS-HI) was proposed aiming at the shortage of the traditional similarity-based method in extracting health index and similarity matching. Autoencoder was applied to construct the health index based on monitoring data, which can minimize the loss of nonlinear information. The health index in multiple time scales was developed for similarity matching by considering the fluctuation of the length of test degradation trajectories. The method can remove the accuracy limitation caused by fixed time scales and enhance the prediction robustness. Performance of the proposed method was evaluated on public turbofan engines datasets. Results demonstrate that the method can improve the remaining useful life (RUL) prediction accuracy and provide stable support for predictive maintenance.
Yu-hui XU,Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA. Remaining useful life prediction of turbofan engine based on similarity in multiple time scales. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1937-1947.
Fig.1Schematic diagram of condition monitoring parameters
Fig.2Structure of autoencoder
Fig.3Framework of AE MTS-HI
层
神经元数
激活函数
输入层
$ {d}_{\mathrm{i}\mathrm{n}} $
—
隐含层1
$ {d}_{\mathrm{i}\mathrm{n}}/2 $
ReLU函数
隐含层2
$ {d}_{\mathrm{o}\mathrm{u}\mathrm{t}} $
线性激活函数
隐含层3
$ {d}_{\mathrm{i}\mathrm{n}}/2 $
ReLU函数
输出层
$ {d}_{\mathrm{i}\mathrm{n}} $
tanh函数
Tab.1Parameters setting of autoencoder
Fig.4Schematic diagram of similarity matching and RUL prediction
数据集
样本个数
数据总量
最小运行周期数
最大运行周期数
训练集
100
20631
128
362
测试集
100
13096
31
303
Tab.2Detailed descriptions of FD001
Fig.5Distributions of running cycles in FD001
Fig.6Classification based on tendency of signals
分类
传感器编号
增长型
2,3,4,8,9,11,13,14,15,17
衰减型
7,12,20,21
固定型
1,5,6,10,16,18,19
Tab.3Classification of sensor signals
Fig.7Schematic diagram of RUL rectification
测试样本运行长度
测试样本数量
选用时间尺度
$30\leqslant {t}_{i} < 50$
7
30
$50\leqslant {t}_{i} < 70$
7
30,50
$70\leqslant {t}_{i}$
86
30,50,70
Tab.4Time scales for similarity matching
Fig.8Experimental results of parameter tuning of autoencoder
Fig.9Degradation model reference library
Fig.10RUL prediction results
方法
RMSE
Score
SVM[24]
29.822
—
CNN[9]
18.448
1 286.7
LSTM[10]
16.14
338
Similarity-based[16]
19.87
—
Similarity-based with SVR[25]
—
388
Similarity-based with KTST[15]
16.87
377.08
AE MTS-HI
14.07
291.67
Tab.5Comparison results with methods proposed by other researchers
降维方法
RMSE
Score
多元线性回归
16.32
486.50
等距特征映射
14.50
339.95
主成分分析
14.29
302.95
自编码器
14.07
291.67
Tab.6Comparison results with other dimensionality reduction methods
隐含层个数
隐含层神经元数
RMSE
1
1
14.31
3
4,1,4
14.17
3
7,1,7
14.07
3
10,1,10
14.12
5
10,6,1,6,10
14.13
5
7,7,1,7,7
14.09
Tab.7Comparison results with other autoencoder structures and parameters
样本长度
样本数量
Score
L=30
L=50
L=70
多时间尺度
$30\leqslant {t}_{i} < 50$
7
26.30
—
—
26.30
$50\leqslant {t}_{i} < 70$
7
8.41
8.86
—
6.56
$70\leqslant {t}_{i}$
86
337.70
276.23
284.35
258.81
所有样本
100
372.41
—
—
291.67
Tab.8Effects of multiple time scales on predicting results
Fig.11Effects of single time scale size on predicting results
样本编号
样本长度
RUL
e
L=30
L=50
L=70
多时间尺度
23
130
113
4.40
4.99
?2.77
2.21
60
147
100
4.81
1.61
?7.17
?0.25
61
159
21
2.32
5.88
4.69
4.30
76
205
10
0.12
?1.80
?1.83
?1.17
49
303
21
?2.36
?3.82
?4.08
?3.42
Tab.9Description and prediction error of typical instances
Fig.12Health indexes of medium-length instances
Fig.13Health indexes of end-of-life instances
[1]
TAHAN M, TSOUTSANIS E, MUHAMMAD M, et al Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198: 122- 144
doi: 10.1016/j.apenergy.2017.04.048
[2]
XIA T, DONG Y, XIAO L, et al Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering and System Safety, 2018, 178: 255- 268
doi: 10.1016/j.ress.2018.06.021
[3]
LIU Y, HU X, ZHANG W Remaining useful life prediction based on health index similarity[J]. Reliability Engineering and System Safety, 2019, 185: 502- 510
doi: 10.1016/j.ress.2019.02.002
[4]
JAVED K, GOURIVEAU R, ZERHOUNI N State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels[J]. Mechanical Systems and Signal Processing, 2016, 94: 214- 236
[5]
WANG H, MA X, ZHAO Y An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2019, 127: 370- 387
doi: 10.1016/j.ymssp.2019.03.019
[6]
王浩伟, 徐廷学, 刘勇 基于随机参数Gamma过程的剩余寿命预测方法[J]. 浙江大学学报:工学版, 2015, 49 (4): 699- 704 WANG Hao-wei, XU Ting-xue, LIU Yong Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (4): 699- 704
[7]
ZHANG H, MIAO Q, ZHANG X, et al An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288- 298
doi: 10.1016/j.microrel.2017.12.036
[8]
CHEN Z, LI Y, XIA T, et al Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[J]. Reliability Engineering and System Safety, 2019, 184: 123- 136
doi: 10.1016/j.ress.2017.09.002
[9]
BABU G S, ZHAO P, LI X. Deep convolutional neural network based regression approach for estimation of remaining useful life [C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 214-228.
[10]
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// Proceedings of the International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2017: 88-95.
[11]
WANG T, YU J, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
[12]
ZIO E, DI MAIO F A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering and System Safety, 2010, 95 (1): 49- 57
doi: 10.1016/j.ress.2009.08.001
[13]
YOU M Y, MENG G A generalized similarity measure for similarity-based residual life prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2011, 225 (3): 151- 160
doi: 10.1177/0954408911399832
[14]
谷梦瑶, 陈友玲, 王新龙 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23 (2): 362- 372 GU Meng-yao, CHEN You-ling, WANG Xin-long Multi-index modeling for similarity-based residual life estimation based on real-time health degree[J]. Computer Integrated Manufacturing Systems, 2017, 23 (2): 362- 372
[15]
CAI H, JIA X, FENG J, et al A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112- 121
doi: 10.1016/j.isatra.2020.03.007
[16]
AZEVEDO D, RIBEIRO B, CARDOSO A. Online simulation of methods to predict the remaining useful lifetime of aircraft components [C]// Proceedings of Experiment International Conference. Washington, D. C.: IEEE, 2019: 199-203.
[17]
CHARTE D, CHARTE F, GARCÍA S, et al A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines[J]. Information Fusion, 2018, 44: 78- 96
doi: 10.1016/j.inffus.2017.12.007
[18]
REN L, SUN Y, CUI J, et al Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J]. Journal of Manufacturing Systems, 2018, 48 (Part C): 71- 77
[19]
MA J, SU H, ZHAO W, et al Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning[J]. Complexity, 2018, 2018: 1- 13
[20]
CHEN C, LEU J, PRAKOSA S W. Using autoencoder to facilitate information retention for data dimension reduction [C]// 3rd International Conference on Intelligent Green Building and Smart Grid. Washington, D. C.: IEEE, 2018: 1-5.
[21]
XIA T, SONG Y, ZHENG Y, et al An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182
doi: 10.1016/j.compind.2019.103182
[22]
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-9.
[23]
HEIMES F O. Recurrent neural networks for remaining useful life estimation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
[24]
LOUEN C, DING S X, KANDLER C. A new framework for remaining useful life estimation using support vector machine classifier [C]// Proceedings of Conference on Control and Fault-Tolerant Systems. Washington, D. C.: IEEE, 2013: 228-233.