Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1576-1584    DOI: 10.3785/j.issn.1008-973X.2021.08.019
    
Review on metal-oxide materials applied in planar perovskite solar cells
Li XIAO1(),Yuan-hao CHEN1,Chang-xing LIANG1,Jian-xi YAO2
1. Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
2. Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
Download: HTML     PDF(1043KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the carrier transport layer in planar perovskite solar cells, metal oxide films have important influence on device properties. The requirements of metal oxide films for planar solar cells in the respect of the morphology, electrical, optical, chemical and thermal properties were systematically overviewed. Worthwhile, the materials characteristic and representative work involving the most promising metal oxide film work as electron transport layer or hole transport layer material were summarized. Research progress of adopting methods such as element doping of metal oxides, surface modification of film and design of composite metal oxide film to improving film mobility, minimizing surface defects and adjusting energy level were proposed. Moreover, the future requirement and the improvement direction of metal oxide thin film deposition technology were discussed after summarizing the advantages and disadvantages of the deposition technology. Finally, the application of low-temperature deposited metal oxide films in flexible devices was expected.



Key wordsmetal oxide      planar perovskite solar cell      physical property      electron transfer layer      thin film deposition technology     
Received: 25 January 2021      Published: 01 September 2021
CLC:  TM 23  
Fund:  重庆市教育委员会科学技术研究资助项目(KJQN201801123);重庆理工大学科研启动基金资助项目(2019ZD12)
Cite this article:

Li XIAO,Yuan-hao CHEN,Chang-xing LIANG,Jian-xi YAO. Review on metal-oxide materials applied in planar perovskite solar cells. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1576-1584.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.019     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1576


面向平板结构钙钛矿太阳能电池的金属氧化物综述

作为平板结构钙钛矿太阳能电池的电荷传输层,金属氧化物薄膜对器件性能有重要影响. 系统性概述平板结构钙钛矿太阳能电池对金属氧化物薄膜形貌、电学、光学、化学及热等物理特性要求,并对目前在高效钙钛矿太阳电池制备中最有前景的金属氧化物电子传输层及空穴传输层材料特性及代表性工作进行总结. 针对大多数金属氧化物迁移率低、表面缺陷多及能级匹配差的问题,分析元素掺杂、表面改性、复合薄膜设计等手段解决的相关进展. 总结目前金属氧化物薄膜沉积技术现状及优缺点,探讨今后薄膜沉积技术发展、改进方向. 对低温沉积金属氧化物薄膜在柔性器件方面的应用进行展望.


关键词: 金属氧化物,  平板结构钙钛矿太阳能电池,  物理特性,  电荷传输层,  薄膜沉积技术 
Fig.1 Efficiency development of perovskite solar cells
Fig.2 Typical structure of planar PSCs
Fig.3 Energy band alignment and carrier transfer diagram in typical planar PSCs[9]
Fig.4 Scanning electron micrographs of SnO2 layers deposited by atomic layer deposition, spin coating and spin coating combined chemical bath deposition[12]
材料种类 VBM/eV CBM/eV Eg/eV μ/(cm2·V?1·s?1
ETL


TiO2 ?7.3 ?4.1 3.0~3.2 1
SnO2 ?7.9 ?4.3 3.6~4.0 250
ZnO ?7.47 ?4.17 3.3 200
Zn2SnO4 ?7.9 ?4.1 3.8 10~30
HTL NiOx ?5.0~?5.4 ?1.29 3.71~4.11 2.8
CuOx ?5.4 ?3.3~?4.1 1.4~2.1 100
Tab.1 Characteristic parameters of main carrier transport materials[8,10]
Fig.5 Schematic diagram of preparing metal-oxide film by spin coating
Fig.6 Schematic diagram of preparing metal-oxide film by chemical bath deposition[12]
Fig.7 Schematic diagram of preparing metal-oxide film by atom layer deposition[41]
Fig.8 Schematic diagram of preparing metal-oxide film by pulsed laser deposition
Fig.9 Schematic diagram of preparing SnO2@TiO2 bilayer film by combining anodization and spin-coating
[1]   Al-ASHOURI A, KOHNEN E, LI B, et al Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction[J]. Science, 2020, 370 (6522): 1300- 1309
doi: 10.1126/science.abd4016
[2]   LIN Y, SAKAI N, DA P, et al A piperidinium salt stabilizes efficient metal-halide perovskite solar cells[J]. Science, 2020, 369 (6499): 96- 102
doi: 10.1126/science.aba1628
[3]   KIM J, YUN J, CHO Y, et al Overcoming the challenges of large area high efficiency perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (9): 1978- 1984
doi: 10.1021/acsenergylett.7b00573
[4]   降戎杰, 张雅洁, 郭强, 等 钙钛矿薄膜制备技术及其在大面积太阳电池中的应用[J]. 微纳电子技术, 2019, 56 (507): 18- 23
JIANG Rong-jie, ZHANG Ya-jie, GUO Qiang, et al Perovskite thin film preparation technology and its application in large-area solar cells[J]. Micronanoelectronic Technology, 2019, 56 (507): 18- 23
[5]   WANG R, HUANG T, XUE J, et al Prospects for metal halide perovskite-based tandem solar cells[J]. Nature Photonics, 2021, 15: 411- 425
[6]   BURSCHKA J, PELLET N, MOON S J, et al Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499 (7458): 316- 319
doi: 10.1038/nature12340
[7]   LIU M, JOHNSTON M B, SNAITH H J Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395
doi: 10.1038/nature12509
[8]   ZHOU Y, LI X, LIN H To be higher and stronger-metal oxide electron transport materials for perovskite solar cells[J]. Small, 2019, 16 (15): 1902579
[9]   PENG J, DUONG T, ZHOU X, et al Efficient indiu-doped tiox electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems[J]. Advanced Energy Materials, 2016, 7 (4): 1601768
[10]   HAQUE M A, SHEIKH A D, GUAN X, et al Metal oxides as efficient charge transporters in perovskite solar cells[J]. Advanced Energy Materials, 2017, 7 (20): 1602803
doi: 10.1002/aenm.201602803
[11]   MARCHIORO A, TEUSCHER J, FRIEDRICH D, et al Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics, 2014, 8 (3): 250- 255
doi: 10.1038/nphoton.2013.374
[12]   ANARAKI E H, KERMANPUR A, STEIER L, et al Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy and Environmental Science, 2016, 9 (10): 3128- 3134
doi: 10.1039/C6EE02390H
[13]   YANG G, TAO H, QIN P, et al Recent progress in electron transport layers for efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4 (11): 3970- 3990
doi: 10.1039/C5TA09011C
[14]   KOJIMA A, TESHIMA K, SHIRAI Y, et al Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050- 6051
doi: 10.1021/ja809598r
[15]   PALLIKKARA A, RAMAKRISHNAN K Efficient charge collection of photoanodes and light absorption of photosensitizers: a review[J]. International Journal of Energy Research, 2020, 45 (2): 1425- 1448
[16]   JIANG L L, WANG Z K, LI M, et al Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells [J]. Solar RRL, 2018, 2 (11): 1800149
doi: 10.1002/solr.201800149
[17]   MAHMUD M A, DUONG T, YIN Y, et al In situ formation of mixed-dimensional surface passivation layers in perovskite solar cells with dual-isomer alkylammonium cations[J]. Small, 2020, 16 (49): 2005022
doi: 10.1002/smll.202005022
[18]   JIANG Q, ZHANG X, YOU J SnO2: a wonderful electron transport layer for perovskite solar cells [J]. Small, 2018, 14 (31): 1801154
doi: 10.1002/smll.201801154
[19]   KE W, FANG G, LIU Q, et al Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137 (21): 6730- 6733
doi: 10.1021/jacs.5b01994
[20]   LI L, ZHOU N, CHEN Q, et al Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics[J]. Journal of Physical Chemistry Letters, 2018, 9 (5): 1124- 1132
doi: 10.1021/acs.jpclett.7b03294
[21]   BU T, LI J, ZHENG F, et al Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J]. Nature Communications, 2018, 9 (4609): 1- 10
[22]   JIANG Q, ZHAO Y, ZHANG X, et al Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13 (7): 460- 466
doi: 10.1038/s41566-019-0398-2
[23]   SUN Q, LI H, GONG X, et al Interconnected SnO2 nanocrystals electron transport layer for highly efficient flexible perovskite solar cells [J]. Solar RRL, 2020, 4 (2): 1900229
doi: 10.1002/solr.201900229
[24]   QIU Z, GONG H, ZHENG G, et al Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency[J]. Journal of Materials Chemistry C, 2017, 5 (28): 7084- 7094
doi: 10.1039/C7TC01224A
[25]   MA F, ZHAO Y, LI J, et al Nickel oxide for inverted structure perovskite solar cells[J]. Journal of Energy Chemistry, 2021, 52: 393- 411
doi: 10.1016/j.jechem.2020.04.027
[26]   YIN X, GUO Y, XIE H, et al Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Solar RRL, 2019, 3 (5): 1900001
doi: 10.1002/solr.201900001
[27]   HU L, PENG J, WANG W, et al Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells [J]. ACS Photonics, 2014, 1 (7): 67- 76
[28]   RU P, BI E, ZHANG Y, et al High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10 (12): 1903487
doi: 10.1002/aenm.201903487
[29]   CAO J, YU H, ZHOU S, et al Low-temperature solution-processed NiOx films for air-stable perovskite solar cells [J]. Journal of Materials Chemistry A, 2017, 5 (22): 11071- 11077
doi: 10.1039/C7TA02228J
[30]   NEJAND B A, AHMADI V, GHARIBZADEH S, et al Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J]. ChemSusChem, 2016, 9 (3): 302- 313
doi: 10.1002/cssc.201501273
[31]   HOSSAIN M I, ALHARBI F H, TABET N Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells[J]. Solar Energy, 2015, 120: 370- 380
doi: 10.1016/j.solener.2015.07.040
[32]   SUN W, LI Y, YE S, et al High-performance inverted planar heterojunction perovskite solar cells based on solution-processed CuOx hole transport layer [J]. Nanoscale, 2016, 8 (20): 10806- 10813
doi: 10.1039/C6NR01927G
[33]   RAO H, YE S, SUN W, et al A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method [J]. Nano Energy, 2016, 27: 51- 57
doi: 10.1016/j.nanoen.2016.06.044
[34]   LIU C, ZHOU X, CHEN S, et al Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells [J]. Advanced Science, 2019, 6 (7): 1801169
doi: 10.1002/advs.201801169
[35]   ZUO C, DING L Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells [J]. Small, 2015, 11 (41): 5528- 5532
doi: 10.1002/smll.201501330
[36]   WILKES G C, DENG X, CHOI J J, et al Laser annealing of TiO2 electron transporting layer in perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2018, 10 (48): 41312- 41317
doi: 10.1021/acsami.8b13740
[37]   TAN H, JAIN A, VOZNYY O, et al Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355 (6326): 722- 726
doi: 10.1126/science.aai9081
[38]   YOO J J, SEO G, CHUA M R, et al Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590 (7847): 587- 593
doi: 10.1038/s41586-021-03285-w
[39]   WU W Q, CHEN D, CHENG Y B, et al Low-temperature solution-processed amorphous titania nanowire thin films for 1 cm2 perovskite solar cells [J]. ACS Applied Materials and Interfaces, 2020, 12 (10): 11450- 11458
doi: 10.1021/acsami.9b19041
[40]   DU M, ZHU X, WANG L, et al High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency[J]. Advanced Materials, 2020, 32 (47): 2004979
doi: 10.1002/adma.202004979
[41]   XING Z, XIAO J, HU T, et al Atomic layer deposition of metal oxides in perovskite solar cells: present and future[J]. Small Methods, 2020, 4 (12): 2000588
doi: 10.1002/smtd.202000588
[42]   KAVAN L, STEIER L, GRÄTZEL M Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability [J]. The Journal of Physical Chemistry C, 2017, 121 (1): 342- 350
doi: 10.1021/acs.jpcc.6b09965
[43]   SEO S, PARK I J, KIM M, et al An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells[J]. Nanoscale, 2016, 8 (22): 11403- 11412
doi: 10.1039/C6NR01601D
[44]   XIAO K, LIN R, HAN Q, et al All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant [J]. Nature Energy, 2020, 5 (11): 870- 880
doi: 10.1038/s41560-020-00705-5
[45]   LIU C, YANG Y, OLGA A S, et al α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells [J]. Advanced Materials, 2020, 32 (32): 2002632
doi: 10.1002/adma.202002632
[46]   MIAO X, WANG S, SUN W, et al Effect of Cu2O content in electrodeposited CuOx film on perovskite solar cells [J]. Nano, 2019, 14 (10): 1950126
doi: 10.1142/S1793292019501261
[47]   SONG S, KANG G, PYEON L, et al Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells[J]. ACS Energy Letters, 2017, 2 (12): 2667- 2673
doi: 10.1021/acsenergylett.7b00888
[48]   YANG D, YANG R, ZHANG J, et al High efficiency flexible perovskite solar cells using superior low temperature TiO2[J]. Energy and Environmental Science, 2015, 8: 3208- 3214
doi: 10.1039/C5EE02155C
[49]   XU R, LI Y, FENG S, et al Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer [J]. Journal of Materials Science, 2020, 55 (14): 5681- 5689
doi: 10.1007/s10853-020-04409-9
[50]   DENG K, CHEN Q, LI L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: efficiency and stability[J]. 2020, 30(46): 2004209.
[1] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.