Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1393-1401    DOI: 10.3785/j.issn.1008-973X.2023.07.014
土木工程     
基于复合材料理论的混凝土内多离子扩散模型
田壮(),肖官衍,金伟良*(),夏晋,程新
浙江大学 建筑工程学院,浙江 杭州 310058
Diffusion model of multi ions in concrete based on composite theory
Zhuang TIAN(),Guan-yan XIAO,Wei-liang JIN*(),Jin XIA,Xin CHENG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1258 KB)   HTML
摘要:

根据Nernst-Einstein方程以及离子的浓度和电导率关系,探究多离子传输时离子浓度对离子扩散系数的影响,比较单离子传输和多离子传输的离子扩散系数差异. 根据通用有效介质(GEM)理论,分别计算水泥浆、骨料和ITZ内部的离子扩散系数和体积分数,得到混凝土内部离子扩散系数,探究混凝土的构成组分对离子扩散系数的影响. 综合考虑混凝土的构成组分以及离子的种类和浓度,提出基于多相复合材料理论的混凝土内部多离子扩散预测模型. 比较计算结果与试验数据可知,离子的扩散系数随着离子浓度的增加而明显下降. 和传统的离子扩散预测模型相比,该模型可以通过混凝土内部离子的种类和浓度预测离子的扩散系数,预测结果更加合理.

关键词: 混凝土多离子扩散系数通用有效介质理论多相复合材料    
Abstract:

The influence of multi-ion concentration on the ionic diffusion coefficient was analyzed according to Nernst-Einstein equation and the relationship between ionic concentration and electrical conductivity. The difference of diffusion coefficient between single-ion transport and multi-ion transport was compared. The ion diffusion coefficient of concrete was obtained based on the general effective media (GEM) theory by calculating the ionic diffusion coefficient and volume fraction of cement paste, aggregate and ITZ. The influence of components on the ionic diffusion coefficient in the concrete was analyzed. A prediction model of diffusion coefficient of multi ions in the concrete based on composite theory was constructed by comprehensively considering components of concrete, multi-ion species and concentration. The calculation results and experimental data were compared. Results show that the ionic diffusion coefficient decreases with the increasing of ionic concentration. The model can predict the ionic diffusion coefficient in the concrete based on ionic species and concentration compared with the traditional diffusion coefficient model. The prediction results are more rational.

Key words: concrete    multi ions    diffusion coefficient    general effective media theory    multi-phase composite material
收稿日期: 2022-07-20 出版日期: 2023-07-17
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(5217080389)
通讯作者: 金伟良     E-mail: 22012037@zju.edu.cn;jinwl@zju.edu.cn
作者简介: 田壮(1998—),男,硕士生,从事混凝土耐久性能的研究. orcid.org/0000-0002-1061-6365. E-mail: 22012037@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
田壮
肖官衍
金伟良
夏晋
程新

引用本文:

田壮,肖官衍,金伟良,夏晋,程新. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401.

Zhuang TIAN,Guan-yan XIAO,Wei-liang JIN,Jin XIA,Xin CHENG. Diffusion model of multi ions in concrete based on composite theory. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1393-1401.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.014        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1393

图 1  溶液中离子扩散系数模型预测结果和试验数据的比较
图 2  不同参数取值时复合材料内部离子扩散系数的变化
图 3  各相扩散系数取值不同时复合材料内离子扩散系数的变化
图 4  混凝土内多离子扩散模型的建模流程图
图 5  氯离子扩散系数测定试验装置的示意图
dr/mm wr/%
4.75 0.35
2.36 8.01
1.18 23.51
0.60 27.81
0.30 28.95
0.15 8.54
剩余 2.83
表 1  骨料级配
图 6  氯离子扩散系数计算值和实验值的对比
方法 公式
文献[13]方法 ${D}_{\mathrm{m} }={D}_{\mathrm{h} }{\left(1-{\varphi }_{\mathrm{l} }\right)}^{3/2}$
文献[14]方法 $ {D}_{\mathrm{m}}={D}_{\mathrm{h}}+\dfrac{{\varphi }_{\mathrm{l}}}{\dfrac{1}{{D}_{\mathrm{l}}-{D}_{\mathrm{h}}}+\dfrac{1-{\varphi }_{\mathrm{l}}}{3{D}_{\mathrm{h}}}} $
文献[15]方法 $ {D}_{\mathrm{m}}={D}_{\mathrm{h}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{1.5{\varphi }_{\mathrm{l}}}{1-{\varphi }_{\mathrm{l}}}\right) $
文献[16]方法 $ \dfrac{{D}_{\mathrm{m}}-{D}_{\mathrm{h}}}{{D}_{\mathrm{m}}+2{D}_{\mathrm{h}}}={\varphi }_{\mathrm{l}}\left(\dfrac{{D}_{\mathrm{l}}-{D}_{\mathrm{h}}}{{D}_{\mathrm{l}}+2{D}_{\mathrm{h}}}\right) $
文献[17]方法 ${D}_{\mathrm{m} }=\left\{\begin{array}{c}\dfrac{ {D}_{\mathrm{h} }{D}_{\mathrm{l} } }{\left(1-{\varphi }_{\mathrm{l} }\right){D}_{\mathrm{l} }+{\varphi }_{\mathrm{l} }{D}_{\mathrm{h} } }\\ {D}_{\mathrm{h} }\left(1-{\varphi }_{\mathrm{l} }\right)+{D}_{\mathrm{l} }{\varphi }_{\mathrm{l} }\end{array}\right.$
文献[18]方法 $ {D}_{\mathrm{c}\mathrm{o}\mathrm{n}}={D}_{\mathrm{c}\mathrm{e}\mathrm{m}}(0.11{\varphi }_{\mathrm{ITZ}}+1-{\varphi }_{\mathrm{A}})\dfrac{2}{2+{\varphi }_{\mathrm{A}}} $
文献[19]方法 $ {D}_{\mathrm{c}\mathrm{o}\mathrm{n}}={D}_{\mathrm{c}\mathrm{e}\mathrm{m}}\left(1+\dfrac{{\varphi }_{\mathrm{A}}}{\dfrac{1-{\varphi }_{\mathrm{A}}}{3}+\dfrac{1}{{2\left({D}_{\mathrm{I}}/{D}_{\mathrm{c}\mathrm{e}\mathrm{m}}\right)}^{\varepsilon }-1}}\right) $
表 2  扩散系数模型的概述
图 7  不同氯离子扩散系数模型的预测值对比
1 金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011.
2 王涛, 朴香兰, 朱慎林. 高等传递过程原理 [M]. 北京: 化学工业出版社, 2005.
3 NOSKOV A V, LILIN S A, PARFENYUK V I Simulation of ion mass transfer processes with allowance for the concentration dependence of diffusion coefficients[J]. Russian Chemical Bulletin, 2006, 55 (4): 661- 665
doi: 10.1007/s11172-006-0309-9
4 孙国文, 孙伟, 张云升, 等 骨料对氯离子在水泥基复合材料中扩散系数的影响[J]. 硅酸盐学报, 2011, 39 (4): 662- 669
SUN Guo-wen, SUN Wei, ZHANG Yun-sheng, et al Influence of aggregates on the chloride ion diffusion coefficient in cement-based composite materials[J]. Journal of Chinese Ceramic Society, 2011, 39 (4): 662- 669
5 刘清风 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报, 2018, 46 (8): 1074- 1080
LIU Qing-feng Multi-phase modeling of concrete at meso-micro scale based on multi-species transport[J]. Journal of Chinese Ceramic Society, 2018, 46 (8): 1074- 1080
6 LI L, PAGE C L Finite element modeling of chloride removal from concrete by an electrochemical method[J]. Corrosion Science, 2000, 42 (12): 2145- 2165
doi: 10.1016/S0010-938X(00)00044-5
7 XIA J, LI L Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39 (Supple.I): 51- 59
8 THOMAS M DA, SCOTT A, BREMNER T, et al Performance of slag concrete in marine environment[J]. ACI Materials Journal, 2008, 105 (6): 628- 634
9 BENTZ E C, THOMAS M. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides [R]. Toronto: University of Toronto, 2012.
10 KHATRI R P Characteristic service life for concrete exposed to marine environments[J]. Cement and Concrete Research, 2004, 34 (5): 745- 752
doi: 10.1016/S0008-8846(03)00086-3
11 ERDOGDU S, KONDRATOVA I L, BREMNER T W Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements[J]. Cement and Concrete Research, 2004, 34 (4): 603- 609
doi: 10.1016/j.cemconres.2003.09.024
12 RIDING K A, THOMAS M D, FOLLIARD K J Apparent diffusivity model for concrete containing supplementary cementitious materials[J]. ACI Materials Journal, 2013, 110 (6): 705- 714
13 CHUEH C C, BERTEI A, PHAROAH J G, et al Effective conductivity in random porous media with convex and non-convex porosity[J]. International Journal of Heat and Mass Transfer, 2014, 71: 183- 188
doi: 10.1016/j.ijheatmasstransfer.2013.12.041
14 HASHIN Z, SHTRIKMAN S A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33 (10): 3125- 3131
doi: 10.1063/1.1728579
15 JEFFREY D J Conduction through a random suspension of spheres[J]. Proceedings of the Royal Society of London Series A, 1973, 335 (1602): 355- 367
16 MALLET P, GUERIN C A, SENTENAC A Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy[J]. Physical Review B, 2005, 72 (1): 14201- 14205
doi: 10.1103/PhysRevB.72.014201
17 TIEDJE E W, GUO P Modeling the influence of particulate geometry on the thermal conductivity of composites[J]. Journal of Materials Science, 2014, 49 (16): 5586- 5597
doi: 10.1007/s10853-014-8268-2
18 CARÉ S Influence of aggregates on chloride diffusion coefficient into mortar[J]. Cement and Concrete Research, 2003, 33 (7): 1021- 1028
doi: 10.1016/S0008-8846(03)00009-7
19 HASHIN Z Thin interphase/imperfect interface in conduction[J]. Journal of Applied Physics, 2001, 89 (4): 2261- 2267
doi: 10.1063/1.1337936
20 LU X Application of the Nernst-Einstein equation to concrete[J]. Cement and Concrete Research, 1997, 27 (2): 293- 302
doi: 10.1016/S0008-8846(96)00200-1
21 傅献彩. 物理化学 [M]. 5版. 北京: 科学出版社, 2005.
22 SNYDER K A, FENG X, KEEN B D, et al Estimating the electrical conductivity of cement paste pore solutions from OH−, K+ and Na+ concentrations [J]. Cement and Concrete Research, 2003, 33 (6): 793- 798
doi: 10.1016/S0008-8846(02)01068-2
23 NIELSEN J M, ADAMSON A W, COBBLE J W The self-diffusion coefficients of the ions in aqueous sodium chloride and sodium sulfate at 25 ℃[J]. Journal of the American Chemical Society, 1952, 74 (2): 446- 451
doi: 10.1021/ja01122a050
24 MCBAIN J W, DAWSON M The diffusion of potassium chloride in aqueous solution[J]. Proceedings of the Royal Society of London Series A, 1935, 148 (863): 32- 39
25 LOBO V, RIBEIRO A, VERISSIMO L Diffusion coefficients in aqueous solutions of potassium chloride at high and low concentrations[J]. Journal of Molecular Liquids, 1998, 78 (1-2): 139- 149
doi: 10.1016/S0167-7322(98)00088-9
26 CRC handbook of chemistry and physics [M]. 89th ed. Boca Raton: CRC Press, 2009.
27 MCLACHLAN D S, BLASZKIEWICZ M, NEWNHAM R E Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73 (8): 2187- 2203
doi: 10.1111/j.1151-2916.1990.tb07576.x
28 OH B H, JANG S Y Prediction of diffusivity of concrete based on simple analytic equations[J]. Cement Concrete Research, 2004, 34 (3): 463- 480
doi: 10.1016/j.cemconres.2003.08.026
29 ISICHENKO M B Percolation, statistical topography, and transport in random media[J]. Review of Modern Physics, 1992, 64 (4): 961- 1043
doi: 10.1103/RevModPhys.64.961
30 LUO X, QU M, SCHUBERT D W Electrical conductivity and fiber orientation of poly (methyl methacrylate)/carbon fiber composite sheets with various thickness[J]. Polymer Composites, 2020, 42 (2): 548- 558
31 LIN J, CHEN H Effect of particle morphologies on the percolation of particulate porous media: a study of superballs[J]. Powder Technology, 2018, 335: 388- 400
doi: 10.1016/j.powtec.2018.05.015
32 LI M, CHEN H, LIN J, et al Effects of the pore shape polydispersity on the percolation threshold and diffusivity of porous composites: theoretical and numerical studies[J]. Powder Technology, 2021, 386: 382- 393
doi: 10.1016/j.powtec.2021.03.055
33 XU W, JIA M, ZHU Z, et al n-Phase micromechanical framework for the conductivity and elastic modulus of particulate composites: design to microencapsulated phase change materials (MPCMs)-cementitious composites[J]. Materials and Design, 2018, 145: 108- 115
doi: 10.1016/j.matdes.2018.02.065
34 CHRISTENSEN B J, COVERDALE T, OLSON R A, et al Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application[J]. Journal of the American Ceramic Society, 1994, 77 (11): 2789- 2804
doi: 10.1111/j.1151-2916.1994.tb04507.x
35 POWERS T C. Physical properties of cement paste [C]// Proceedings of the 4th International Conference on the Chemistry of Cement. Washington, DC: Cementand Concrete Association, 1960: 577–613.
36 WALLER V, DELARRARD F, ROUSSEL P. Modelling the temperature rise in massive HPC structures. [C]// 4th International Symposium on Utilization of High-Strength/High-Performance Concrete. Paris: RILEM, 1996: 415-421.
37 GARBOCZI E J, BENTZ D P Computer simulation of the diffusivity of cement-based materials[J]. Journal of Materials Science, 1992, 27 (8): 2083- 2092
doi: 10.1007/BF01117921
38 BENTZ D P, GARBOCZI E J. Computer modelling of interfacial transition zone: microstructure and properties [C]// RILEM Report 20. Cachan: RILEM, 1999: 349-385.
39 BOURDETTE B, RINGOT E, OLLIVIER J P Modelling of the transition zone porosity[J]. Cement Concrete Research, 1995, 25 (4): 741- 751
doi: 10.1016/0008-8846(95)00064-J
40 JIANG J, SUN G, WANG C Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials[J]. Construction and Building Materials, 2013, 39: 134- 138
doi: 10.1016/j.conbuildmat.2012.05.023
41 YANG C C, SU K J Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement Concrete Research, 2002, 32 (10): 1559- 1565
doi: 10.1016/S0008-8846(02)00832-3
42 ZHENG J J, WONG H S, BUENFELD N R Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model[J]. Cement Concrete Research, 2009, 39 (9): 805- 813
doi: 10.1016/j.cemconres.2009.06.002
43 应敬伟, 肖建庄 模型再生混凝土氯离子非线性扩散细观仿真[J]. 建筑材料学报, 2013, 16 (5): 863- 868
YING Jing-wei, XIAO Jian-zhuang Meso-level simulation of chloride nonlinear diffusion in modeled recycled aggregate concrete[J]. Journal of Building Materials, 2013, 16 (5): 863- 868
doi: 10.3969/j.issn.1007-9629.2013.05.022
[1] 陈曦泽,贾俊峰,白玉磊,郭彤,杜修力. 基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1061-1070.
[2] 吴一凡,潘文豪,罗尧治. 大跨钢-混凝土组合楼盖的优化设计[J]. 浙江大学学报(工学版), 2023, 57(5): 988-996.
[3] 李明厚,SELYUTINA Nina ,SMIRNOV Ivan ,张祥,李贝贝,刘元珍,张玉. 基于热裂纹演化的玻化微珠保温混凝土渗透性能分析[J]. 浙江大学学报(工学版), 2023, 57(2): 367-379.
[4] 戴理朝,曹威,易善昌,王磊. 基于WPT-SVD和GA-BPNN的混凝土结构损伤识别[J]. 浙江大学学报(工学版), 2023, 57(1): 100-110.
[5] 鲁海波,张广泰,刘诗拓,李雪藩,韩霞. 盐渍土环境下聚丙烯纤维混凝土柱抗震性能[J]. 浙江大学学报(工学版), 2023, 57(1): 111-121.
[6] 张敏,邓明科,智奥龙,宋诗飞,陈晖. 纤维织物增强高延性混凝土加固RC梁的受弯性能[J]. 浙江大学学报(工学版), 2022, 56(9): 1693-1703.
[7] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[8] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[9] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[10] 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.
[11] 田威,高芳芳,贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289.
[12] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[13] 杜永潇,卫军,孙晓立. 预应力混凝土梁自振频率的疲劳演变[J]. 浙江大学学报(工学版), 2022, 56(10): 2007-2018.
[14] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[15] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.