Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 499-513    DOI: 10.3785/j.issn.1006-754X.2025.05.114
优化设计     
175 MPa超高压井口6BX型法兰结构评价及轻量化设计
张绪亮1,2,3,4(),史君林5,6,董仁1,2,3,4,练章华5,查磊1,2,3,4,蒋洪波1,2,3,4
1.中国石油天然气集团有限公司 超深层复杂油气藏勘探开发技术研发中心,新疆 库尔勒 841000
2.新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心,新疆 库尔勒 841000
3.新疆超深油气重点实验室,新疆 库尔勒 841000
4.中国石油塔里木油田公司,新疆 库尔勒 841000
5.西南石油大学 油气藏地质及开发工程全国重点实验室,四川 成都 610500
6.四川轻化工大学 机械工程学院,四川 宜宾 644000
Structural evaluation and lightweight design of 175 MPa ultra-high pressure wellhead 6BX flange
Xuliang ZHANG1,2,3,4(),Junlin SHI5,6,Ren DONG1,2,3,4,Zhanghua LIAN5,Lei ZHA1,2,3,4,Hongbo JIANG1,2,3,4
1.R & D Center for Ultra-deep Complex Reservior Exploration and Development, CNPC, Korla 841000, China
2.Engineering Research Center for Ultra-deep Complex Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, China
3.Xinjiang?Key?Laboratory?of Ultra-deep Oil and Gas, Korla 841000, China
4.Petrochina Tarim Oilfield Company, Korla 841000, China
5.National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
6.School of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
 全文: PDF(5381 KB)   HTML
摘要:

为了解决175 MPa超高压井口装置因规范标准缺失而导致的传统设计中体积冗余、制造难度大及存在潜在失效风险等问题,开展井口设备关键部件6BX型法兰的结构评价及轻量化设计研究。以175 MPa井口装置使用的口径为280 mm的6BX型法兰为研究对象,从材料性能、垫环密封强度等方面对某公司生产的6BX型法兰进行评价,探讨了水压试验压力与法兰结构强度和尺寸的关系,揭示了法兰尺寸的影响因素;在保证安全的前提下,提出了轻量化的优化方案,并采用有限元方法论证了优化后结构的合理性。研究结果表明:采用传统方式设计的法兰结构能满足实际使用要求,但结构体积过大,安装不便,其壁厚过厚会造成材料热处理难度大且存在风险,而且采用标准BX型垫环有密封泄漏的风险;法兰结构尺寸受多因素影响,大口径法兰结构尺寸的主控因素是水压试验压力,其次是颈部厚度;建议根据弹塑性理论设计颈部厚度,对于175 MPa超高压井口设备,推荐法兰内外径之比为2,并采用加宽的BX型垫环。所提出的法兰结构优化方案合理,法兰轻量化效果显著,且有一定的安全裕量;建议降低175 MPa超高压井口装备水压试验压力,从原来的1.5倍额定压力降低为1.25倍。研究结果为175 MPa超高压法兰结构的设计提供了理论依据。

关键词: 超高压井口设备6BX型法兰轻量化有限元分析    
Abstract:

To address the issues of volume redundancy, high manufacturing difficulty and potential failure risks in the traditional design of 175 MPa ultra-high pressure wellhead equipment due to the absence of specification standards, a structural evaluation and lightweight design research on the critical component 6BX flange of wellhead equipment was conducted. Taking the 6BX flange with a diameter of 280 mm and employed in 175 MPa wellhead equipment as the research object, the 6BX flange produced by a certain company was evaluated in terms of material properties, gasket sealing strength and other factors. The relationship between the hydrostatic test pressure and the structural strength and dimensions of flange was explored, and the influence factors of flange dimensions were revealed. Under the premise of ensuring safety, an optimization scheme for lightweight was proposed, and the rationality of the optimized structure was verified by the finite element method. The research results indicated that the flange structure designed by the traditional method could meet the actual use requirements, but it had an excessively large structure volume, making installation inconvenient. Excessive wall thickness would make the material processing more difficult and risky, and using standard BX gasket also posed the risk of sealing leakage. The flange structure dimensions was influenced by multiple factors. The main controlling factor for the dimensions of large-diameter flange structures was the hydrostatic test pressure, followed by the neck thickness. It was recommended to design the neck thickness according to the elastic-plasticity theory. For the 175 MPa ultra-high pressure wellhead equipment, the ratio of the inner and outer diameters of flange was recommended to be 2 and a widened BX gasket should be adopted. The proposed flange structure optimization scheme was reasonable, significantly reducing the weight of the flange, and also offering a certain safety margin. It was recommended to reduce the hydrostatic pressure test pressure for the 175 MPa ultra-high pressure wellhead equipment from the original 1.5 times the rated pressure to 1.25 times. The research results provide a theoretical basis for the design of the 175 MPa ultra-high pressure flange structure.

Key words: ultra-high pressure    wellhead equipment    6BX flange    lightweight    finite element analysis
收稿日期: 2025-02-24 出版日期: 2025-09-01
CLC:  TE 931.1  
基金资助: 国家自然科学基金青年科学基金项目(52204015);四川省自然科学基金项目(2023NSFSC0920);四川轻化工大学科研创新团队计划项目(SUSE652A004)
通讯作者: 史君林     E-mail: 821070764@qq.com
作者简介: 张绪亮(1989—),男,高级工程师,博士生,从事井控技术及其应用等研究,E-mail: 821070764@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张绪亮
史君林
董仁
练章华
查磊
蒋洪波

引用本文:

张绪亮,史君林,董仁,练章华,查磊,蒋洪波. 175 MPa超高压井口6BX型法兰结构评价及轻量化设计[J]. 工程设计学报, 2025, 32(4): 499-513.

Xuliang ZHANG,Junlin SHI,Ren DONG,Zhanghua LIAN,Lei ZHA,Hongbo JIANG. Structural evaluation and lightweight design of 175 MPa ultra-high pressure wellhead 6BX flange[J]. Chinese Journal of Engineering Design, 2025, 32(4): 499-513.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.114        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/499

图1  采油树安装现场
图2  法兰结构模型
测量项测量结果
法兰外径Df/mm1 194
法兰厚度T/mm305
大毂直径J1/mm799
小毂直径J2/mm739
轮毂长度J3/mm120
最大内径B/mm280
凸面直径Dk/mm700
螺栓孔分布圆直径Db/mm1 028
螺栓孔直径db/mm76
表1  法兰尺寸测量结果
图3  BX型垫环力学模型
化学成分含量/%
410(UNS S41000)F6NM(UNS S41500)
C0.150.05
Mn10.50~1.00
P0.040.03
S0.030.03
Si10.6
Ni0.53.5~5.5
Cr11.5~1.511.5~14.0
Mo00.50~1.00
表2  两种马氏体不锈钢的主要化学成分
图4  F6NM(UNS S41500)材料拉伸测试数据
图5  垫环受力分解
图6  螺栓孔分布圆直径的确定
图7  螺栓孔分度圆直径与轮毂大径和螺栓数量的关系
图8  不同方法算得的法兰径比
尺寸参数数值
垫环外径Dr368.1-0.130
环高H23.140+0.20
环宽A30.10+0.20
平面直径Dp364.83-0.5+0.5
平面宽C26.830+0.15
孔径D3.20+0.15
槽深E13.880+0.50
槽外径G373.30+0.10
槽宽N36.140+10
表 3  优化后BX垫环和垫环槽的尺寸 (mm)
方案

法兰

外径

Df

凸面

直径

DK

法兰

厚度

T

大毂

直径

J1

小毂

直径

J2

径比

Y

螺栓孔分布圆直径Db螺栓孔直径db螺栓规格×数量

水压

系数

备注
方案1990.62501.19265.38698.52638.862.28869.9774M70×161.25API 6A方法
方案287.92501.19236.13580.82521.171.8675.2774M70×161.25按GB/T 34019—2017计算
方案3864.48501.19244.38496.76437.111.5674.8374M70×161.25ASME VIII-3方法
方案491.15501.19246.88620.05560.42.00791.574M70×161.25本文推荐
方案51050.43527.79264.88620.05560.42.00929.7874M70×201.5螺栓数量多
方案6954.565.84247.88620.05560.42.00808.5180M76×161.5螺栓规格大
表 4  不同方案下的法兰结构尺寸
图9  轻量化前后法兰结构尺寸对比
图10  法兰结构有限元模型
图11  垫环材料应力—应变曲线
图12  各工况下法兰结构应力云图
图13  额定工况下法兰结构各方向应力云图
图14  各工况下法兰结构轴向位移云图
图15  各工况下上下法兰之间凸面的接触压力云图
图16  水压工况下螺栓应力云图
图17  各工况下螺栓中间截面应力云图
图18  法兰中部轴向位移曲线
工况内外缘位移差/mmtan Φ/10-3Φ/(°)J
预紧工况0.3041.140.0650.218
水压工况0.3811.430.0820.273
额定工况0.3571.340.0770.256
表5  法兰刚度系数计算结果
图19  极限内压下法兰结构应力和应变云图
图20  垫环关键位置内压—应变曲线
图21  额定工况下法兰结构在附加弯矩作用下的变形示意
图22  极限状态下螺栓应力及其与力矩的关系曲线
图23  上下法兰凸台间隙与力矩的关系曲线
图24  极限拉伸载荷作用下法兰结构应力云图
[1] 黄福喜, 汪少勇, 李明鹏, 等. 中国石油深层、超深层油气勘探进展与启示[J]. 天然气工业, 2024, 44(1): 86-96.
HUANG F X, WANG S Y, LI M P, et al. Progress and implications of deep and ultra-deep oil and gas exploration in PetroChina[J]. Natural Gas Industry, 2024, 44(1): 86-96.
[2] 孙金声, 刘伟, 王庆, 等. 万米超深层油气钻完井关键技术面临挑战与发展展望[J]. 钻采工艺, 2024, 47(2): 1-9.
SUN J S, LIU W, WANG Q, et al. Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China[J]. Drilling & Production Technology, 2024, 47(2): 1-9.
[3] 王春生, 冯少波, 张志, 等. 深地塔科1井钻井设计关键技术[J]. 石油钻探技术, 2024, 52(2): 78-86.
WANG C S, FENG S B, ZHANG Z, et al. Key technologies for drilling design of Well Shendi take-1[J]. Petroleum Drilling Techniques, 2024, 52(2): 78-86.
[4] 王志刚, 王稳石, 张立烨, 等. 万米科学超深井钻完井现状与展望[J]. 科技导报, 2022, 40(13): 27-35.
WANG Z G, WANG W S, ZHANG L Y, et al. Present situation and prospect of drilling and completion of 10 000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27-35.
[5] American Petroleum Institute. Specification for wellhead and tree equipment:API Spec 6A-2018 [S]. Washington: API, 2018.
[6] American Petroleum Institute. Specification for 30 000 psi flanged wellhead equipment first edition: API 6AB-1983[S] Washington: API, 1983.
[7] American Petroleum Institute. High-pressure high-temperature design guidelines: [S]. Washington: API, 2015.
[8] PATHAK P D, KOCUREK C G, TAYLOR S L. Design method combining API and ASME codes for subsea equipment for HP/HT conditions up to 25, 000-psi pressure and 400°F temperature[J]. Oil and Gas Facilities, 2014, 3(2): 47-55.
[9] 樊春明, 郑家伟, 杜文波, 等. 特高压平板闸阀设计与密封性能分析[J]. 石油矿场机械, 2024, 53(1): 44-49.
FAN C M, ZHENG J W, DU W B, et al. Design and analysis of sealing performance of UHP plate gate valve[J]. Oil Field Equipment, 2024, 53(1): 44-49.
[10] 应道宴, 蔡暖姝, 蔡仁良. 螺栓法兰接头安全密封技术(三): 法兰的设计选用及其承载能力评估[J]. 化工设备与管道, 201, 49(6): 1-10.
YING D Y, CAI N S, CAI R L. Safe sealing technology for bolted flange connection (3): selection and design of flange and assessment of its load bearing capacity[J]. Process Equipment & Pipelines, 201, 49(6): 1-10.
[11] NELSON N R, PRASAD N S, SEKHAR A S. Structural integrity and sealing behaviour of bolted flange joint: a state of art review[J]. International Journal of Pressure Vessels and Piping, 2023, 204: 104975.
[12] EICHENBERG R. Design of high-pressure integral and welding neck flanges with pressure-energized ring joint gaskets[J]. Journal of Engineering for Industry, 1964, 86(2): 199-203.
[13] 王发远. 油井井口装置法兰用BX型压力自紧式密封垫环[J]. 石油钻采机械, 1981, 9(3): 100-103, 60.
WANG F Y. BX pressure self-tightening gasket ring for flange of oil well wellhead device[J]. China Petroleum Machinery, 1981, 9(3): 100-103, 60.
[14] FOWLER J R. Sealability of API R, RX, & BX ring gaskets[C]//Offshore Technology Conference. Houston, Texas, May 1-3,1995.
[15] CHANG R T, FISHER E A, HALL G. BX flange analysis: significance of gasket on load capability of a subsea connection[C]//Offshore Technology Conference. Houston, Texas, May 1-5,1991.
[16] KIRKEMO F. Structural capacities of flanged joints[C]// Proceedings of the ASME Pressure Vessels and Piping Conference 2018: Prague, Czech Republic, July 15-20, 2018, volume 5. High-Pressure Technology; Non-destructiveEvaluation, Diagnosis and Prognosis; Student Paper Symposium and Competition.2019.DOI:10.1115/PVP2018-85088 .
doi: 10.1115/PVP2018-85088
[17] KARPANAN K, KIRKEMO F, SUBRAMANIAN K. Structural capacity estimation of subsea flanges using various codes and standards[C]//ASME 2024 Pressure Vessels & Piping Conference, Bellevue, Washington, Jul. 28-Aug. 02, 2024.
[18] LUTKIEWICZ P, ROBERTSON D, LEE S K L. Subsea flanges, comparison between conventional API 6A type 6BX flange and SPO compact flange designs[C]//ASME 2020 Pressure Vessels & Piping Conference. (2020-08-03)[2025-02-01]. .
[19] 国聪, 贾振宇, 王剑飞. 175MPa套管头产品材料性能分析[C]//中国材料大会2024暨世界材料大会2024论文集.[2025-02-10]. .
GUO C, JIA Z Y, WANG J F. Analysis of Material Properties of 175MPa Casing Head Products [C]//2024 Proceedings of Chinese Materials Conference 2024 & World Materials Conference. [2025-02-10]. .
[20] 李龙飞, 李美求, 姜玉虎, 等. 压裂井口超高压非标 法兰组合载荷试验研究[J]. 石油机械, 2022, 50 (10): 79-86.
LI L F, LI M Q, JIANG Y H, et al. Experimental study on combined load of ultrahigh pressure non-standard flange at fracturing wellhead[J]. Petroleum Machinery, 2022, 50(10): 79-86.
[21] LI B, WU S N, ZHANG L B, et al. Strength and tightness analysis of wellhead flange connections considering ultrahigh-pressure conditions[J]. Ocean Engineering, 2024, 307: 118245.
[22] 化工过程及设备译丛编译组. 化工过程及设备: 第6辑 高压容器专辑[M]. 上海: 上海市科学技术编译馆, 1965.
Chemical Process and Equipment Translation and Compilation Group. Chemical process and equipment: episode 6, the high pressure vessel album[M]. Shanghai: Shanghai Science and Technology Compilation and Translation Museum, 1965.
[23] 王晨, 王荣贵. 压力容器中八角垫密封设计的研究[J]. 化肥设计, 2018, 56(2): 22-25.
WANG C, WANG R G. Research on the sealing design of octagonal gasket in pressure vessel[J]. Chemical Fertilizer Design, 2018, 56(2): 22-25.
[24] 庞冠. 金属八角垫与CL2 500管法兰的设计及标准化[J]. 化工设备与管道, 2021, 58(4): 85-91.
PANG G. Design and standardization of CL2 500 pipe flange and metal octagonal gasket[J]. Process Equipment & Piping, 2021, 58(4): 85-91.
[25] MARTIN T G, SMITH S N, BONDOS J. Materials and corrosion history with labarge Madison production: a 20 year story of success[C]//CORROSION, New Orleans, Mar. 16-20, 2008.
[26] SCOPPIO L, NICE P. Application limits for martensitic stainless steel forged bar-stock alloy UNS S41500 (F6NM)[C]//CORROSION 2015. Dallas, Mar. 15-19, 2015.
[27] PETERS D T, PHAM M. Discussion of the background of the design margins in API 17TR8 HPHT design referencing ASME VIII division 3[C]//Proceedings of the ASME Pressure Vessels and Piping Conference 2018, Prague, Czech Republic, Jul. 15-20, 2018.
[28] SHI J L, LIAN Z H, DING L L, et al. The strength and minimum wall thickness of wellhead equipment for ultrahigh-pressure oil and gas wells[J]. SPE Journal, 2024, 29(12): 6655-6675.
[29] 史君林, 张强, 练章华, 等. 超高压井口设备壳体基于断裂力学的安全评价研究[J]. 安全与环境学报, 2025, 25(2): 435-446.
SHI J L, ZHANG Q, LIAN Z H, et al. Evaluation and analysis of the shell of ultra-high pressure wellhead equipment based on fracture mechanics[J]. Journal of Safety and Environment, 2025, 25(2): 435-446.
[30] FORGE T. Modern Flange Design Bulletin 502[M]. 7th ed. Southfield: G &W Taylor-Bonney Division, 1978.
[31] 张永泽. 对API 6A规范设计强度限制准则的探讨[J].石油矿场机械, 1993 (3): 12-17.
ZHANG Y Z. Discussion on the design strength limit criterion of API 6A specification[J]. Oil Field Equipment, 1993 (3): 12-17.
[32] 薛洲, 周瑾, 叶力, 等. 国内外标准中压力容器水压试验要求对比分析[J]. 石油化工设备, 2006, 35(6): 45-48.
XUE Z, ZHOU J, YE L, et al. The comparing analysis of the domestic and foreign standards pertaining pressure vessel hydraulic test[J]. Petro-Chemical Equipment, 2006, 35(6): 45-48.
[33] 张敬才, 胡幼明. 压力容器水压试验压力及其利弊分析[J]. 核动力工程, 2016, 37(4): 34-38.
ZHANG J C, HU Y M. Pressure for hydrostatic test of pressure vessel and its advantages and disadvantages[J]. Nuclear Power Engineering, 2016, 37(4): 34-38.
[34] 丁伯民. 对GB 150《压力容器》有关内容的商榷: 试验压力值的确定及相关问题[J]. 化工设备与管道, 2013, 50(1): 6-10.
DING B M. Deliberation of some contents in GB150 "Pressure Vessel”[J]. Process Equipment & Piping, 2013, 50(1): 6-10.
[35] 桑如苞. 压力容器法兰的合理设计原理与方法[J]. 化工设备设计, 1987, 24(2): 5-12.
SANG R B. Rational design principle and method of pressure vessel flange[J]. Process Equipment & Piping, 1987, 24(2): 5-12.
[36] LU W M, LOGANATHAN S, SINGH Y, et al. Development of BOP API flange capacity using simulation approach[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Sep. 23-25, 2024.
[37] KIRKEMO F, WORMSEN A. Design of high-pressure cylindrical shells against plastic collapse[C]//ASME 2024 Pressure Vessels & Piping Conference, Bellevue, Washington, USA. Jul. 28-Aug. 02, 2024.
[38] 徐超, 余绍蓉, 郑晓亚, 等. 机械螺栓法兰连接的有限元力学模型比较研究[J]. 机械设计与制造, 2009(6): 37-39.
XU C, YU S R, ZHENG X Y, et al. Comparative evaluation of finite element models for mechanical structures with bolted joints[J]. Machinery Design & Manufacture, 2009(6): 37-39.
[39] 魏江鹏, 钱才富, 陈朝晖, 等. ASME规范中材料应力应变的数值化表征方法研究[J]. 化工设备与管道, 2016, 53(3): 1-5.
WEI J P, QIAN C F, CHEN Z H, et al. Study of formula method for expression of stress-strain curve in ASME code[J]. Process Equipment & Piping, 2016, 53(3): 1-5.
[40] 杨心理. 高压管箱法兰的强度和刚度有限元分析[J]. 压力容器, 2018, 35(6): 46-51.
YANG X L. Strength and stiffness FEA of the high pressure channel flange[J]. Pressure Vessel Technology, 2018, 35(6): 46-51.
[1] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[2] 吴勃夫,吴姚烨,贝璟,吴宗扬,孙亮. 铸铝一体化车门的多目标可靠性优化设计[J]. 工程设计学报, 2024, 31(2): 188-200.
[3] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[4] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[5] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[6] 张旭辉, 闫建星, 麻兵, 鞠佳杉, 沈奇峰, 吴雨佳. 基于改进YOLOv5s的护帮板异常检测方法研究[J]. 工程设计学报, 2022, 29(6): 665-675.
[7] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[8] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[9] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[10] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[11] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[12] 廖红玉,邓梦洋,周敏,谢良喜,姚俊夫. 基于钢丝绳传动的自动抹灰机的轻量化设计[J]. 工程设计学报, 2022, 29(2): 196-201.
[13] 倪维宇, 张横, 姚胜卫. 基于多工况的汽车座椅骨架轻量化设计[J]. 工程设计学报, 2021, 28(6): 729-736.
[14] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[15] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.