Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (2): 178-187    DOI: 10.3785/j.issn.1006-754X.2024.03.187
机械优化设计     
基于响应面法的绞磨机辅助拉尾绳装置优化设计
蔡锦云1,2(),刘忠1,2,3(),王罡4,赵庆斌5,安宁5,杜旭伟6,李东良6,李源周1
1.桂林电子科技大学 机电工程学院,广西 桂林 541004
2.广西特种工程装备与控制重点实验室,广西 桂林 541004
3.桂林航天工业学院 机电工程学院,广西 桂林 541004
4.国家电网有限公司 西藏电力有限公司,西藏 拉萨 850000
5.中国电力建设集团 四川电力设计咨询有限责任公司,四川 成都 610000
6.青海送变电工程有限公司,青海 西宁 810000
Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology
Jinyun CAI1,2(),Zhong LIU1,2,3(),Gang WANG4,Qingbin ZHAO5,Ning AN5,Xuwei DU6,Dongliang LI6,Yuanzhou LI1
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2.Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin, 541004, China
3.School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
4.Tibet Electric Power Co. , Ltd. , State Grid Corporation of China, Lhasa 850000, China
5.Sichuan Electric Power Design and Consulting Co. , Ltd. , Power Construction Corporation of China, Chengdu 610000, China
6.Qinghai Power Transmission and Transformation Engineering Co. , Ltd. , Xining 810000, China
 全文: PDF(4738 KB)   HTML
摘要:

针对绞磨机辅助拉尾绳装置的轻量化问题,结合装置的刚度和强度要求,提出了一种基于响应面法的优化设计方法。通过对绞磨机辅助拉尾绳装置进行参数化建模和静力学分析,将辅助拉尾绳装置的关键结构尺寸作为设计参数,以整体质量最小为目标函数、最大等效应力和最大变形量为约束条件,采用中心复合设计法建立响应面模型,并对响应面的拟合程度和设计参数的灵敏度进行分析。基于响应面模型迭代寻求最优解集,以获得辅助拉尾绳装置的最优设计参数。经优化设计后,辅助拉尾绳装置的质量减小了29%,且工程验证表明,辅助拉尾绳装置整体轻便高效且工作可靠,达到了预期的应用效果,由此验证了所提出的优化设计方法的可行性和有效性。研究结果可为同类型工程装备的结构优化设计与实际应用提供理论支撑和技术指导。

关键词: 绞磨机辅助拉尾绳装置有限元分析响应面法优化设计    
Abstract:

Aiming at the lightweight problem of auxiliary tail rope pulling device for winch mill, an optimization design method based on response surface methodology is proposed in combination with the stiffness and strength requirements of the device. Through the parametric modeling and statics analysis of the auxiliary tail rope pulling device for winch mill, the key structural dimensions of the auxiliary tail rope pulling device were taken as the design parameters, the minimum overall mass was taken as the objective function, and the maximum equivalent stress and maximum deformation were taken as the constraint conditions. The response surface model was established by the central composite design method, and the fitting degree of the response surface and the sensitivity of the design parameters were analyzed. Based on the response surface model, the optimal solution set was iteratively sought, and the optimal design parameters of the auxiliary tail rope pulling device were obtained. After optimized design, the mass of the auxiliary tail rope pulling device was reduced by 29%, and the engineering verification showed that the auxiliary tail rope pulling device was light, efficient and reliable, and had achieved the expected application effect, which verified the feasibility and effectiveness of the proposed optimization design method. The research results can provide theoretical support and technical guidance for structural optimization design and practical application of the same type of engineering equipment.

Key words: winch mill    auxiliary tail rope pulling device    finite element analysis    response surface methodology    optimization design
收稿日期: 2023-07-05 出版日期: 2024-04-26
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(51765014);川藏铁路供电工程科技攻关项目(SGXZJGOOJCWT2200079)
通讯作者: 刘忠     E-mail: 1789991528@qq.com;Liuzhong678@163.com
作者简介: 蔡锦云(2000—),男,广西玉林人,硕士生,从事特种工程装备设计研究,E-mail: 1789991528@qq.com,https://orcid.org/0009-0005-8956-7728
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡锦云
刘忠
王罡
赵庆斌
安宁
杜旭伟
李东良
李源周

引用本文:

蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.

Jinyun CAI,Zhong LIU,Gang WANG,Qingbin ZHAO,Ning AN,Xuwei DU,Dongliang LI,Yuanzhou LI. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology[J]. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.187        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/178

图1  新型绞磨机结构示意
图2  辅助拉尾绳装置结构示意
图3  辅助拉尾绳装置受力示意
图4  辅助拉尾绳装置结构简化示意
图5  辅助拉尾绳装置有限元模型
参数数值
弹性模量/GPa210
泊松比0.31
材料密度/(kg/m37 850
屈服强度/MPa355
抗拉强度/MPa490
表1  Q355钢的力学性能参数
图6  辅助拉尾绳装置工作载荷设定
图7  辅助拉尾绳装置变形云图
图8  辅助拉尾绳装置等效应力云图
图9  二阶多项式响应面模型
图10  基于响应面法的辅助拉尾绳装置结构优化流程
参数取值范围
H162.5~150
T110~22
T210~22
D113~25
D213~25
表2  辅助拉尾绳装置设计参数的取值范围 (mm)
图11  上轴的受力简图
试验编号设计参数

最大等效应力

σmax/MPa

最大变形量

δmax/mm

质量m/kg
H1/mmT1/mmT2/mmD1/mmD2/mm
1106.316.016.019.019.0158.220.2412.00
262.516.016.019.019.0158.280.2010.12
3150.016.016.019.019.0155.790.1814.96
4106.310.016.019.019.0158.220.2811.05
5106.322.016.019.019.0158.240.2212.95
6106.316.010.019.019.0158.210.2411.16
7106.316.022.019.019.0158.210.2412.84
8106.316.016.013.019.0465.710.6911.91
9106.316.016.025.019.0147.830.1612.12
10106.316.016.019.013.0371.780.2411.97
11106.316.016.019.025.0158.450.1712.05
1293.914.314.317.320.7199.740.2910.83
13118.614.314.317.317.3204.960.3212.18
1493.917.714.317.317.3199.740.2811.35
15118.617.714.317.320.7205.020.3012.75
1693.914.317.717.317.3205.190.2911.29
17118.614.317.717.320.7204.960.3212.68
1893.917.717.717.320.7205.240.2811.85
19118.617.717.717.317.3205.020.3013.20
2093.914.314.320.717.3164.360.1910.87
21118.614.314.320.720.7121.670.2212.26
2293.917.714.320.720.7121.110.1811.43
23118.617.714.320.717.3164.380.2112.78
2493.914.317.720.720.7121.730.2011.37
25118.614.317.720.717.3163.720.2212.72
2693.917.717.720.717.3163.730.1811.89
表3  基于CCD法的辅助拉尾绳装置结构优化试验设计方案及结果
响应面模型R2ERMS
质量10.000 43
最大变形量0.999 710.001 68
最大等效应力0.999 610.042 57
表4  辅助拉尾绳装置各响应面模型的拟合程度评价结果
图12  辅助拉尾绳装置各响应面模型的回归拟合结果
图13  辅助拉尾绳装置各设计参数的灵敏度分析结果
图14  H1 、 T1 对辅助拉尾绳装置质量的影响
图15  H1 、 D1 对辅助拉尾绳装置最大变形量的影响
图16  D1 、 D2 对辅助拉尾绳装置最大等效应力的影响
参数初始值优化值
解集1解集2解集3
H1/mm97.081.386.684.8
T1/mm20.011.711.510.8
T2/mm20.010.710.111.4
D1/mm20.023.420.619.3
D2/mm18.023.418.721.0
m/kg13.49.59.49.5
δmax/mm0.200.140.200.24
σmax/MPa135.984.5139.4145.4
表5  辅助拉尾绳装置结构优化结果
图17  改进前的绞磨机
图18  改进后带辅助拉尾绳装置的绞磨机
图19  新型绞磨机执行组塔起吊作业现场
1 程龙瑞.新型双滚筒绞磨机传动结构及改进设计研究[D].徐州:中国矿业大学,2018:1-3.
CHENG L R. Study on the transmission structure and improved design of a new double rollers windlass[D]. Xuzhou: China University of Mining and Technology, 2018: 1-3.
2 卓俊帆,李瑶.输变电工程建设中的吊装技术分析[J].科技创新导报,2018,15(36):56-57.
ZHUO J F, LI Y. Analysis of lifting technology in power transmission and substation construction[J]. Science and Technology Innovation Herald, 2018, 15(36): 56-57.
3 刘忠,蔡锦云,王罡,等.复杂山区微型钢管桩钻机的研制与应用[J].机电工程技术,2023,52(10):6-10. doi:10.3969/j.issn.1009-9492.2023.10.002
LIU Z, CAI J Y, WANG G, et al. Development and application of miniature steel pipe pile drilling rig in complex mountainous areas[J]. Mechanical & Electrical Engineering Technology, 2023, 52(10): 6-10.
doi: 10.3969/j.issn.1009-9492.2023.10.002
4 KHURI A I, MUKHOPADHYAY S. Response surface methodology[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(2): 128-149.
5 KAHRAMAN M F, ÖZTÜRK S. Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation[J]. Measurement, 2019, 147: 106825.
6 韩正清,许金,芮万智,等.高速短初级直线感应电动机等效电路模型及时变参数辨识[J].电机与控制学报,2021,25(11):8-15.
HAN Z Q, XU J, RUI W Z, et al. Equivalent circuit model and time-varying parameter identification of high speed short primary linear induction motors[J]. Electric Machines and Control, 2021, 25(11): 8-15.
7 ZHANG Z, JIA X H, YANG T, et al. Multi-objective optimization of lubricant volume in an ELSD considering thermal effects[J]. International Journal of Thermal Sciences, 2021, 164: 106884.
8 徐光亿,齐志冲,田彦朝,等.基于响应面法的沉井掘进机回转装置优化设计[J].机械设计,2022,39():92-97.
XU G Y, QI Z C, TIAN Y Z, et al. Optimization design of rotary device of caisson roadheader based on response surface method[J]. Journal of Machine Design, 2022, 39(Supplment 2): 92-97.
9 张开拓,管殿柱,白硕玮,等.基于响应面分析法的龙门式折弯机轻量化设计[J].制造业自动化,2019,41(1):57-60. doi:10.3969/j.issn.1009-0134.2019.01.013
ZHANG K T, GUAN D Z, BAI S W, et al. Lightweight design of gantry bending machine based on response surface methodology[J]. Manufacturing Automation, 2019, 41(1): 57-60.
doi: 10.3969/j.issn.1009-0134.2019.01.013
10 DING Z L, XUE J H, ZHU X Y, et al. Optimization of CSG dam profile based on response surface methodology[J]. Case Studies in Construction Materials, 2022, 17: e01430.
11 邢雷,李金煜,赵立新,等.基于响应面法的井下旋流分离器结构优化[J].中国机械工程,2021,32(15):1818-1826. doi:10.3969/j.issn.1004-132X.2021.15.007
XING L, LI J Y, ZHAO L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826.
doi: 10.3969/j.issn.1004-132X.2021.15.007
12 李银波,汤子汉,季林红,等.下肢外骨骼人机互连装置对关节内力的影响[J].清华大学学报(自然科学版),2019,59(7):544-550.
LI Y B, TANG Z H, JI L H, et al. Physical human-robot interface for lower limb exoskeletons to affect internal joint forces[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7): 544-550.
13 孙光明,王奕苗,万仟,等.考虑装配变形的精密机床床身优化设计[J].工程设计学报,2022,29(3):318-326. doi:10.3785/j.issn.1006-754X.2022.00.035
SUN G M, WANF Y M, WAN Q, et al. Optimization design of precision machine tool bed considering assembly deformation[J]. Chinese Journal of Engineering Design, 2022, 29(3): 318-326.
doi: 10.3785/j.issn.1006-754X.2022.00.035
14 李海峰,吴冀川,刘建波,等.有限元网格剖分与网格质量判定指标[J].中国机械工程,2012,23(3):368-377. doi:10.3969/j.issn.1004-132X.2012.03.026
LI H F, WU J C, LIU J B, et al. Finite element mesh generation and decision criteria of mesh quality[J]. China Mechanical Engineering, 2012, 23(3): 368-377.
doi: 10.3969/j.issn.1004-132X.2012.03.026
15 成大先.机械设计手册[M].5版.北京:化学工业出版社,2008:55-65.
CHENG D X. Mechanical design manual[M]. 5th ed. Beijing: Chemical Industry Press, 2008: 55-65.
16 刘鸿文.材料力学[M].6版.北京:高等教育出版社,2017:193-196. doi:10.1051/ncssc/201701045
LIU H W. Mechanics of materials[M]. 6th ed. Beijing: Higher Education Press, 2017: 193-196.
doi: 10.1051/ncssc/201701045
17 张焕梅,杨瑞刚.基于响应面法的起重机结构可靠性灵敏度分析[J].中国工程机械学报,2020,18(2):131-136.
ZHANG H M, YANG R G. Reliability sensitivity analysis of crane structure based on response surface method[J]. Chinese Journal of Construction Machinery, 2020, 18(2): 131-136.
18 郑娆,张敬博,李双喜,等.基于响应面法的船舶艉轴密封结构的优化设计[J].机电工程,2022,39(11):1544-1550. doi:10.3969/j.issn.1001-4551.2022.11.007
ZHENG R, ZHANG J B, LI S X, et al. Optimization design of ship stern shaft seal structure based on response surface method[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(11): 1544-1550.
doi: 10.3969/j.issn.1001-4551.2022.11.007
19 KARSH P K, MUKHOPADHYAY T, CHAKRABORTY S, et al. A hybrid stochastic sensitivity analysis for low-frequency vibration and low-velocity impact of functionally graded plates[J]. Composites Part B: Engineering, 2019, 176: 107221.
[1] 曹望城,韩佳轩,姚廷强. 基于参数化多体动力学模型的内齿式回转支承动态优化设计[J]. 工程设计学报, 2024, 31(2): 168-177.
[2] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[3] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[4] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[5] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[6] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[7] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[8] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[9] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[10] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[11] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[12] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[13] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[14] 张锦, 刘佩珊, 殷玉枫. Y形旋转超声波马达的设计与动态特性分析[J]. 工程设计学报, 2021, 28(2): 248-254.
[15] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.