Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (2): 188-200    DOI: 10.3785/j.issn.1006-754X.2024.03.159
机械优化设计     
铸铝一体化车门的多目标可靠性优化设计
吴勃夫(),吴姚烨(),贝璟,吴宗扬,孙亮
合肥工业大学 汽车与交通工程学院,安徽 合肥 230009
Multi-objective reliability optimization design for cast aluminum integrated car door
Bofu WU(),Yaoye WU(),Jing BEI,Zongyang WU,Liang SUN
School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
 全文: PDF(3215 KB)   HTML
摘要:

为提升车门的轻量化水平与性能,采用“材料—结构—性能”一体化集成方法设计铸铝一体化车门。基于构建的铸铝一体化车门有限元模型,以车门的厚度为设计变量,采用径向基函数(radial basis function, RBF)神经网络近似模型和二阶响应面近似模型并分别结合二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ, NSGA-Ⅱ)、多目标粒子群优化(multi-objective particle swarm optimization, MOPSO)算法以及多岛遗传算法(multi-island genetic algorithm, MIGA)对车门的下沉刚度工况位移、上扭转刚度工况位移、下扭转刚度工况位移、一阶弯曲模态频率、一阶扭转模态频率和质量进行确定性优化设计。在此基础上,考虑材料及加工制造等不确定性因素,对确定性优化解的质量水平进行6Sigma可靠性分析与优化。结果表明,二阶响应面近似模型与MOPSO算法的优化组合方案实现了车门的最佳轻量化,RBF神经网络近似模型与MOPSO算法的优化组合方案实现了车门下沉刚度工况位移的最小化。上述2种组合分别实现了车门轻量化与安全化的设计目标。研究结果可为车身零部件的优化设计提供参考。

关键词: 铸铝一体化车门轻量化径向基函数神经网络近似模型二阶响应面近似模型多目标粒子群优化算法6Sigma可靠性    
Abstract:

In order to improve the lightweight level and performance of the car door, the integrated method of "material-structure-performance" is adopted to design the cast aluminum integrated car door. Based on the constructed finite element model of the cast aluminum integrated car door, with the thickness of the car door as the design variable, the radial basis function (RBF) neural network approximation model and the second-order response surface approximation model were used in combination with the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), multi-objective particle swarm optimization (MOPSO) algorithm and multi-island genetic algorithm (MIGA) to conduct the deterministic optimization design for the sinking stiffness condition displacement, upper torsional stiffness condition displacement, lower torsional stiffness condition displacement, first-order bending mode frequency, first-order torsional mode frequency and mass of the car door. On this basis, the 6Sigma reliability analysis and optimization for the quality level of the deterministic optimization solution were carried out considering the uncertainties of materials and manufacturing. The results showed the optimal combination of second-order response surface approximation model and MOPSO algorithm achieved the optimal lightweight of the car door, and the optimal combination of RBF neural network approximation model and MOPSO algorithm could minimize the the displacement of the car door under the sinking stiffness condition. The above two combinations achieved the design goals of lightweight and safety for the car door, respectively. The research results can provide reference for the optimization design of car parts.

Key words: cast aluminum integrated car door    lightweight    radial basis function neural network approximation model    second-order response surface approximation model    multi-objective particle swarm optimization algorithm    6Sigma reliability
收稿日期: 2023-04-26 出版日期: 2024-04-26
CLC:  U 463.82  
基金资助: 国家自然科学基金资助项目(51875150)
通讯作者: 吴姚烨     E-mail: bbfwu@163.com;wuyaoyee@163.com
作者简介: 吴勃夫(1980—),男,安徽安庆人,讲师,博士,从事汽车空气动力学主、被动流动控制与汽车车身数字化制造研究,E-mail: bbfwu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴勃夫
吴姚烨
贝璟
吴宗扬
孙亮

引用本文:

吴勃夫,吴姚烨,贝璟,吴宗扬,孙亮. 铸铝一体化车门的多目标可靠性优化设计[J]. 工程设计学报, 2024, 31(2): 188-200.

Bofu WU,Yaoye WU,Jing BEI,Zongyang WU,Liang SUN. Multi-objective reliability optimization design for cast aluminum integrated car door[J]. Chinese Journal of Engineering Design, 2024, 31(2): 188-200.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.159        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/188

参数数值
密度/(kg/m3)2 800
弹性模量/GPa69
泊松比0.33
抗拉强度/MPa≥390
伸长率/%≥8
表1  ZL201A铝合金材料性能参数
图1  钢制车门有限元模型
图2  铸铝一体化车门有限元模型
图3  铸铝一体化车门下沉刚度工况
图4  铸铝一体化车门上扭转刚度工况
图5  车门下扭转刚度工况
图6  铸铝一体化车门模态仿真结果
图7  铸铝一体化车门模态试验测点布置
图8  铸铝一体化车门模态试验结果
模态频率/Hz相对误差/%
仿真值试验值
一阶弯曲模态36.6237.873.4
一阶扭转模态54.5956.493.5
表2  铸铝一体化车门模态仿真与试验结果对比
图9  不同拉丁超立方试验设计方法的采样策略
图10  铸铝一体化车门各部件厚度示意
试验编号设计变量m/kgf1/Hzf2/Hzd1/mmd2/mmd3/mm
T1/mmT2/mmT3/mmT4/mmT5/mm
12.0693.8622.8283.1033.44812.9025.7246.062.0733.1451.301
22.2073.1722.2763.2412.27611.4927.1747.503.5882.8601.174
33.4482.2763.2414.0003.10315.8337.3558.591.8571.3780.460
43.0343.7932.3453.8622.96613.6334.3654.942.2521.6160.604
52.4832.3452.0002.4833.17210.9729.5550.204.6992.4480.951
????????????
282.0002.9663.5862.5522.48314.0524.8245.342.2952.4261.416
293.6554.0002.8972.6903.24116.1938.5860.321.2811.1990.444
303.5863.7243.6553.7932.75917.7538.1159.711.0091.2140.426
表3  铸铝一体化车门确定性优化的试验设计方案与结果
响应RBF神经网络近似模型二阶响应面近似模型
d10.974 860.931 54
d20.980 790.979 53
d30.970 830.961 69
f10.999 210.999 93
f20.999 430.999 50
m0.999 110.999 98
表4  铸铝一体化车门各响应的近似模型的精度评价结果
参数数值
种群数/个100
迭代数/次50
交叉率0.9
交叉分布指数10
突变分布指数20
表5  NSGA-II的参数设置
参数数值
迭代数/次50
粒子数/个100
惯性权重0.9
全局增量0.9
粒子增量0.9
表6  MOPSO算法的参数设置
参数数值
种群数/个50
岛屿数/个10
迭代数/次10
交叉率1.0
变异率0.01
迁移率0.01
表7  MIGA的参数设置
参数初始值1)优化值
NSGA-ⅡMOPSOMIGA
T1/mm0.703.716 23.730 83.738 8
T2/mm1.402.000 62.000 02.003 7
T3/mm0.652.000 12.000 02.017 2
T4/mm0.703.999 13.990 83.980 5
T5/mm1.803.999 74.000 03.973 9
d1/mm4.4021.843 51.837 91.866 9
d2/mm2.9041.115 31.104 11.100 7
d3/mm1.4430.352 10.347 90.347 1
f1/Hz49.2240.0040.1140.17
f2/Hz75.5361.2161.3361.41
m/kg17.4613.32213.35013.406
表8  基于RBF神经网络近似模型的铸铝一体化车门确定性优化结果
参数初始值1)优化值
NSGA-ⅡMOPSOMIGA
T1/mm0.703.726 83.722 83.747 0
T2/mm1.402.000 72.000 02.014 5
T3/mm0.652.000 02.000 02.007 9
T4/mm0.703.301 33.469 23.469 3
T5/mm1.803.994 13.948 83.982 5
d1/mm4.4022.551 32.566 82.546 4
d2/mm2.9041.172 11.170 31.160 2
d3/mm1.4430.390 40.388 70.386 6
f1/Hz49.2240.0140.0340.21
f2/Hz75.5361.3861.3561.56
m/kg17.4613.30213.30213.376
表9  基于二阶响应面近似模型的铸铝一体化车门确定性优化结果
参数RBF神经网络近似模型二阶响应面近似模型
NSGA-IIMOPSOMIGANSGA-IIMOPSOMIGA
QRQRQRQRQRQR
d2/mm818181818181
d3/mm818181818181
f1/Hz0.6780.5030.9370.6511.0650.7130.6940.5120.7380.5391.1920.767
f2/Hz3.8690.9994.2310.9994.4170.9994.3730.9994.2940.9994.8880.999
表10  铸铝一体化车门确定性优化结果的质量水平与可靠度
参数初始值1)优化值
NSGA-ⅡMOPSOMIGA
T1/mm0.703.998 03.941 63.961 3
T2/mm1.402.135 12.000 02.066 5
T3/mm0.652.018 92.000 02.031 3
T4/mm0.703.968 84.000 03.948 0
T5/mm1.803.986 64.000 03.990 7
d1/mm4.4021.696 61.680 11.744 4
d2/mm2.9040.910 70.964 10.952 2
d3/mm1.4430.276 20.278 80.280 1
f1/Hz49.2242.4542.3142.35
f2/Hz75.5364.1863.9163.98
m/kg17.4614.15413.78613.983
表11  基于RBF神经网络近似模型的铸铝一体化车门可靠性优化结果
参数NSGA-IIMOPSOMIGA
QRQRQR
d2818181
d3818181
f17.5716.1716.551
f2818181
表12  基于RBF神经网络近似模型的铸铝一体化车门可靠性优化结果的质量水平与可靠度
参数优化值仿真值相对误差/%
d1/mm1.680 11.650 01.8
d2/mm0.964 10.936 72.8
d3/mm0.278 80.282 41.3
f1/Hz42.3141.761.3
f2/Hz63.9163.211.1
m/kg13.78613.7610.2
表13  基于RBF神经网络近似模型和MOPSO算法的铸铝一体化车门可靠性优化结果的仿真验证
图11  基于RBF神经网络近似模型和MOPSO算法的铸铝一体化车门可靠性优化结果的拟合曲面
参数初始值1)优化值
NSGA-ⅡMOPSOMIGA
T1/mm0.703.951 93.954 73.953 2
T2/mm1.402.040 72.000 02.007 9
T3/mm0.652.00132.000 02.033 3
T4/mm0.703.861 03.182 53.494 7
T5/mm1.803.670 33.900 83.993 2
d1/mm4.4022.558 32.521 42.476 6
d2/mm2.9041.110 91.112 01.101 7
d3/mm1.4430.383 90.384 00.378 7
f1/Hz49.2242.2242.0242.04
f2/Hz75.5363.7163.7363.73
m/kg17.4613.89413.85113.924
表14  基于二阶响应面近似模型的铸铝一体化车门可靠性优化结果
参数NSGA-IIMOPSOMIGA
QRQRQR
d2818181
d3818181
f16.8016.1816.411
f2818181
表15  基于二阶响应面近似模型的铸铝一体化车门可靠性优化结果的质量水平与可靠度
参数优化值仿真值相对误差/%
d1/mm2.521 42.526 40.2
d2/mm1.112 01.119 00.7
d3/mm0.384 00.388 41.1
f1/Hz42.0241.660.9
f2/Hz63.7363.350.6
m/kg13.85113.7340.8
表16  基于二阶响应面近似模型和MOPSO算法的铸铝一体化车门可靠性优化结果的仿真验证
图12  基于二阶响应面近似模型和MOPSO算法的铸铝一体化车门可靠性优化结果的拟合曲面
1 徐建全,杨沿平.纯电动汽车与传统汽车轻量化全生命周期多目标优化研究[J].汽车工程,2019,41(8):885-891,914.
XU J Q, YANG Y P. A multi-objective lightweight optimization study on full life cycle of electric and conventional vehicles[J]. Automotive Engineering, 2019, 41(8): 885-891, 914.
2 WANG B, ZHANG Z Y, XU G C, et al. Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting[J]. Resources, Conservation & Recycling, 2023, 191: 106877.
3 高云凯,申振宇,冯兆玄,等.多目标优化在车门轻量化设计中的应用[J].同济大学学报(自然科学版),2017,45(2):275-280,308.
GAO Y K, SHEN Z Y, FENG Z X, et al. Application of multi-objective optimization in vehicle door lightweight[J]. Journal of Tongji University (Natural Science), 2017, 45(2): 275-280, 308.
4 李军,冷川.基于RBF神经网络模型的车门多目标轻量化设计[J].重庆交通大学学报(自然科学版),2019,38(11):127-132.
LI J, LENG C. Multi-objective lightweight design of vehicle door based on RBF neural network model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(11): 127-132.
5 马彬彬,谭继锦,林彧群.基于径向基函数神经网络的车门轻量化设计[J].汽车工程学报,2015,5(2):136-143. doi:10.3969/j.issn.2095-1469.2015.02.08
MA B B, TAN J J, LIN Y Q. A research on lightweight car door design based on RBF neural network[J]. Chinese Journal of Automotive Engineering, 2015, 5(2): 136-143.
doi: 10.3969/j.issn.2095-1469.2015.02.08
6 侯振方,胡海欧,张爱兵,等.车门结构多目标轻量化研究[J].机电工程,2020,37(4):359-364. doi:10.3969/j.issn.1001-4551.2020.04.004
HOU Z F, HU H O, ZHANG A B, et al. Multi-objective lightweight research of a door structure[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(4): 359-364.
doi: 10.3969/j.issn.1001-4551.2020.04.004
7 方柘林,王丽娟,陈宗渝,等.基于车门结构的多目标优化设计方法研究[J].机械设计,2014,31(8):60-64.
FANG Z L, WANG L J, CHEN Z Y, et al. Study of multi-objective optimization design based on the vehicle door structure[J]. Journal of Machine Design, 2014, 31(8): 60-64.
8 陈静,崔晓凡,郑晋军,等.基于加点多目标粒子群算法的碳纤维防撞梁优化设计[J].湖南大学学报(自然科学版),2022,49(8):21-28. doi:10.5755/j02.eie.31232
CHEN J, CUI X F, ZHENG J J, et al. Optimization design of carbon fiber anti-collision beam based on multi-objective particle swarm with additional points[J]. Journal of Hunan University (Natural Sciences), 2022, 49(8): 21-28.
doi: 10.5755/j02.eie.31232
9 任明,孙涛,石永金,等.基于Kriging近似模型的车架轻量化优化[J].机械强度,2019,41(6):1372-1377.
REN M, SUN T, SHI Y J, et al. Lightweight optimization of vehicle frame structure based on the Kriging approximate model[J]. Journal of Mechanical Strength, 2019, 41(6): 1372-1377.
10 朱茂桃,钱洋,顾娅欣,等.基于Kriging模型的车门刚度和模态优化[J].汽车工程,2013,35(11):1047-1050,1042. doi:10.3969/j.issn.1000-680X.2013.11.019
ZHU M T, QIAN Y, GU Y X, et al. Stiffness and modal optimization of car door based on Kriging model[J]. Automotive Engineering, 2013, 35(11): 1047-1050, 1042.
doi: 10.3969/j.issn.1000-680X.2013.11.019
11 史朝军.基于多学科设计优化的车门结构轻量化研究[D].武汉:武汉科技大学,2014.
SHI C J. Research on structure lightweight of car-door base on multidisciplinary design optimization[D]. Wuhan: Wuhan University of Science and Technology, 2014.
12 高杰.某皮卡车门布置设计及多目标轻量化优化设计研究[D].镇江:江苏大学,2016.
GAO J. A study on layout design and multi-objective lightweight design and optimization for a pickup truck door[D]. Zhenjiang: Jiangsu University, 2016.
13 ZAHIR H, WALEED F F, KARTINI A. An investigation into NVC characteristics of vehicle behaviour using modal analysis[J]. IOP Conference Series: Materials Science and Engineering, 2017, 184(1): 012027.
14 殷晓伟,张瑞乾,陈勇.径向基函数近似模型在车门轻量化中的应用[J].机械设计与制造,2022(8):22-27. doi:10.3969/j.issn.1001-3997.2022.08.005
YIN X W, ZHANG R Q, CHEN Y. Application of radial basis function approximate model in lightweight of automobile door[J]. Machinery Design & Manufacture, 2022(8): 22-27.
doi: 10.3969/j.issn.1001-3997.2022.08.005
15 季宁,张卫星,于洋洋,等.基于最优拉丁超立方抽样方法和NSGA-Ⅱ算法的注射成型多目标优化[J].工程塑料应用,2020,48(3):72-77.
JI N, ZHANG W X, YU Y Y, et al. Multi-objective optimization of injection molding based on optimal Latin hypercube sampling method and NSGA-Ⅱ algorithm[J]. Engineering Plastics Application, 2020, 48(3): 72-77.
16 兰凤崇,周建华,赖番结,等.基于径向基函数神经网络的白车身减重优化研究[J].机械设计与制造,2018(8):29-32. doi:10.3969/j.issn.1001-3997.2018.08.009
LAN F C, ZHOU J H, LAI F J, et al. Lightweight design of BIW based on radial basis function neural networks[J]. Machinery Design & Manufacture, 2018(8): 29-32.
doi: 10.3969/j.issn.1001-3997.2018.08.009
17 张帅,郭志军,王传青.基于分析驱动设计的参数化白车身前端结构轻量化多目标优化[J].汽车工程,2019,41(9):1102-1107.
ZHANG S, GUO Z J, WANG C Q. Multi-objective lightweight optimization of parametric frontend BIW structure based on analysis-driven design[J]. Automotive Engineering, 2019, 41(9): 1102-1107.
18 袁发庭,姜发,刘健犇,等.基于神经网络模型与多岛遗传算法的空心电抗器隔音装置优化设计[J].高电压技术,2023,49(3):1213-1223.
YUAN F T, JIANG F, LIU J B, et al. Optimization design of sound-insulation device of air-core reactor based on neural network model and multi-island genetic algorithm[J]. High Voltage Engineering, 2023, 49(3): 1213-1223.
19 ESFE M H, MAHIAN O, HAJMOHAMMAD M H, et al. Design of a heat exchanger working with organic nanofluids using multi-objective particle swarm optimization algorithm and response surface method[J]. International Journal of Heat and Mass Transfer, 2018, 119: 922-930.
20 李书华,吴宗扬,吴钇陶,等.一体化铸铝防撞梁的多目标可靠性优化设计[J].重庆理工大学学报(自然科学),2022,36(12):18-25.
LI S H, WU Z Y, WU Y T, et al. Multi-objective reliability optimization design of anti-collision beams made of integrated cast aluminum[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(12): 18-25.
21 李书华,贝璟,吴宗扬,等.铸铝一体化发动机罩的可靠性优化设计[J].汽车工程学报,2023,13(3):353-361.
LI S H, BEI J, WU Z Y, et al. Reliability optimization design for cast aluminum integrated engine hood[J]. Chinese Journal of Automotive Engineering, 2023, 13(3): 353-361.
[1] 张旭辉, 闫建星, 麻兵, 鞠佳杉, 沈奇峰, 吴雨佳. 基于改进YOLOv5s的护帮板异常检测方法研究[J]. 工程设计学报, 2022, 29(6): 665-675.
[2] 廖红玉,邓梦洋,周敏,谢良喜,姚俊夫. 基于钢丝绳传动的自动抹灰机的轻量化设计[J]. 工程设计学报, 2022, 29(2): 196-201.
[3] 倪维宇, 张横, 姚胜卫. 基于多工况的汽车座椅骨架轻量化设计[J]. 工程设计学报, 2021, 28(6): 729-736.
[4] 孙月海, 唐二星. 弧齿锥齿轮基本参数优化设计[J]. 工程设计学报, 2020, 27(5): 616-624.
[5] 魏雅君, 邱国梁, 丁广和, 杨亮, 刘桁. 一种重载码垛机器人结构优化设计方法[J]. 工程设计学报, 2020, 27(3): 332-339.
[6] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[7] 周镇宇, 唐进元, 董建雄. 同功重比修形斜齿和直齿面齿轮性能对比研究[J]. 工程设计学报, 2016, 23(4): 338-344.
[8] 张冰蔚, 马晓明 . 基于APDL的直线电机进给驱动平台的参数优化设计[J]. 工程设计学报, 2005, 12(2): 93-96.