Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (1): 148-157    DOI: 10.3785/j.issn.1008-973X.2026.01.014
    
Operation planning of complex combined heat and power systems based on multi-objective optimization
Jianhong CHEN(),Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1921KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The expansion, transformation, and upgrading of thermal power plants have significantly increased the complexity of combined heat and power (CHP) systems in terms of the number, type, and performance degradation level of units. A multi-objective optimization model based on the energy efficiency, exergy, economy and environmental factors was constructed for the unit operation planning of complex CHP systems, with comprehensive consideration of the influencing factors such as the unit commitment status and ramping rates of the units during the actual operation process. The entropy weight method was introduced to objectively allocate weights to each objective, transforming the multi-objective optimization problem into single-objective optimization problems. A dynamic programming algorithm was employed to solve the problems, ensuring the determinacy and objectivity of the optimal solution. Taking the complex CHP system of a thermal power plant as a case study, the heat and power load demand over a 24-hour period was randomly selected for operation planning and analysis. The comparison between the optimization results and the results of the original design scheme indicated that the operating cost was reduced by 79 600 yuan per day after optimization. The proposed model can effectively improve the operation economy and reliability of complex CHP systems.



Key wordscomplex combined heat and power system      multi-objective optimization      operation planning      entropy weight method      dynamic programming method     
Received: 04 December 2024      Published: 15 December 2025
CLC:  TK 212  
Cite this article:

Jianhong CHEN,Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO. Operation planning of complex combined heat and power systems based on multi-objective optimization. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 148-157.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.014     OR     https://www.zjujournals.com/eng/Y2026/V60/I1/148


基于多目标优化的复杂热电联产系统运行规划

热电厂的扩建、改造和升级显著增加了热电联产系统在机组数量、种类及性能劣化程度等方面的复杂性. 针对复杂热电联产系统的运行规划,综合考虑机组在实际运行过程中的启停状态、爬坡速率等影响因素,构建基于能效、?、经济、环境等的多目标优化模型. 引入熵权法客观地分配各目标的权重,将多目标优化问题转化为单目标优化问题;采用动态规划算法进行求解,确保最优解的确定性和客观性. 以某热电厂的复杂热电联产系统为例,随机选取24 h的热电负荷需求进行运行规划和计算分析,并将优化结果与原设计方案进行对比,结果表明优化计算后运行成本降低了7.96万元/d. 所提模型能够有效地提升复杂热电联产系统运行的经济性与可靠性.


关键词: 复杂热电联产系统,  多目标优化,  运行规划,  熵权法,  动态规划法 
Fig.1 Diagram of subproblem decomposition in operation planning of complicated combined heat and power systems
Fig.2 Schematic diagram of economic cost calculation under unstable load conditions
Fig.3 Calculation flowchart of weighted single-objective optimization model based on entropy weight method
Fig.4 Diagram of relationship between energy utilization efficiency and energy flow for different units
启动方式$\theta _{\mathrm{w}} $/℃ts/d
冷态额定参数启动< 150> 7
温态额定参数启动150~3502~7
热态额定参数启动> 350< 2
滑参数启动
Tab.1 Steam turbine initiation methods
Fig.5 Flowchart of solution process for operation planning of complex CHP systems
Fig.6 System topology diagram of case thermal power plant
Fig.7 Thermoelectric load curves of thermal power plant in 3×24 h
Fig.8 Thermoelectric load curves of thermal power plant in 3×24 h after simplification treatment
方案f(η)/万元f(e)/万元f(c)/万元F/万元
原方案355 09227 960234 91092 222
方案1364 29227 960234 634101 698
方案2366 27727 960234 405103 912
方案3361 92227 960237 81996 143
方案4361 18127 960240 20293 019
方案5359 58127 960240 13391 488
方案6364 81527 960238 32198 534
方案7364 72227 960238 28798 475
方案8379 82427 960236 782115 082
方案9363 22427 960236 82698 438
Tab.2 Results of quantitative calculations for each plan
Fig.9 Cost curves of operating schemes for each unit after optimization
Fig.10 Power operation planning curves for each unit of thermal power plant over a 24-hour period
Fig.11 Operation planning curves of medium-pressure steam extraction volume for each unit of thermal power plant over a 24-hour period
Fig.12 Operation planning curves of low-pressure steam extraction volume for each unit of thermal power plant over a 24-hour period
[14]   LIU Keyi. The optimal configuration of the district heating source structure based on the 4E evaluation index system [D]. Harbin: Harbin Institute of Technology, 2015.
[15]   孙敬凯. 基于技术经济评价体系的供热规划关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SUN Jingkai. Reaearch of key problems in heating planning based on technical economic evaluation [D]. Harbin: Harbin Institute of Technology, 2016.
[16]   国家环境保护局科技标准司. 工业污染物产生和排放系数手册[M]. 北京: 中国环境科学出版社, 1996: 154–162.
[17]   叶倩琳, 王万良, 王铮 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1107- 1120
YE Qianlin, WANG Wanliang, WANG Zheng Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1107- 1120
[18]   HAN G, FENG G, TANG C, et al Evaluation of the ventilation mode in an ISO class 6 electronic cleanroom by the AHP-entropy weight method[J]. Energy, 2023, 284: 128586
doi: 10.1016/j.energy.2023.128586
[19]   FENG Z, SHEN X, LI P, et al Performance optimization and scheme evaluation of liquid cooling battery thermal management systems based on the entropy weight method[J]. Journal of Energy Storage, 2024, 80: 110329
doi: 10.1016/j.est.2023.110329
[20]   ZHU Y, TIAN D, YAN F. Effectiveness of entropy weight method in decision-making [J]. Mathematical Problems in Engineering, 2020: 3564835.
[21]   CHEN P Effects of normalization on the entropy-based TOPSIS method[J]. Expert Systems with Applications, 2019, 136: 33- 41
doi: 10.1016/j.eswa.2019.06.035
[22]   KUMAR R, SINGH S, BILGA P S, et al Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review[J]. Journal of Materials Research and Technology, 2021, 10: 1471- 1492
doi: 10.1016/j.jmrt.2020.12.114
[23]   SHI H, LIU M, LI Y, et al Multi-objective optimization of integrated lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 223: 119991
doi: 10.1016/j.applthermaleng.2023.119991
[24]   黄树红, 孙奉仲, 盛德仁, 等. 汽轮机原理[M]. 北京: 中国电力出版社, 2008: 335–343.
[1]   国家发展改革委, 国家能源局. 国家发展改革委 国家能源局关于开展全国煤电机组改造升级的通知[EB/OL]. (2021-10-29) [2024-12-02]. https://www.gov.cn/zhengce/zhengceku/2021-11/03/content_5648562.htm.
[2]   MOSTAFA M H, RYAD A K, HUSSIEN S A, et al Data-driven stochastic dynamic economic dispatch for combined heat and power systems using particle swarm optimization[J]. Energy Reports, 2024, 12: 4555- 4567
doi: 10.1016/j.egyr.2024.10.032
[3]   HASSABALLAH E G, KESHTA H E, ABDEL-LATIF K M, et al A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties[J]. Energy, 2024, 299: 131419
doi: 10.1016/j.energy.2024.131419
[4]   HE C, LIANG Z, YANG Z, et al Multi-objective optimization for hydrogen-mixed combined heat and power (CHP) plants considering economic and environmental factors based on MILP[J]. Electric Power Systems Research, 2023, 221: 109442
doi: 10.1016/j.jpgr.2023.109442
[5]   KAZEMIANI-NAJAFABADI P, AMIRI RAD E Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis[J]. Energy, 2021, 224: 120135
doi: 10.1016/j.energy.2021.120135
[6]   ZHAO T, ZHENG Y, LI G Integrated unit commitment and economic dispatch of combined heat and power system considering heat-power decoupling retrofit of CHP unit[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108498
[7]   WU H, LIU Z, HE Y, et al Two-layer optimal scheduling method for regional integrated energy system considering flexibility characteristics of CHP system[J]. Energy, 2024, 308: 132970
doi: 10.1016/j.energy.2024.132970
[8]   王玮, 王子欣, 孔德安, 等 灵活性驱动下的热电联产机组多目标协同控制策略[J]. 动力工程学报, 2024, 44 (12): 1907- 1915
WANG Wei, WANG Zixin, KONG De’an, et al Flexibility-driven multi-objective cooperative control strategy for combined heat and power units[J]. Journal of Chinese Society of Power Engineering, 2024, 44 (12): 1907- 1915
[9]   LIU M, WANG S, YAN J Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm[J]. Energy, 2021, 214: 119022
doi: 10.1016/j.energy.2020.119022
[10]   许士锦, 钱海, 曾乔迪, 等 基于多目标优化的多区域热电联产最优调度[J]. 供用电, 2023, 40 (11): 54- 60
XU Shijin, QIAN Hai, ZENG Qiaodi, et al Optimal dispatch of multi-region combined heat and power generation based on multi-objective optimization[J]. Distribution & Utilization, 2023, 40 (11): 54- 60
[11]   王安, 杨绮, 王菁, 等 含储热的热电联产机组经济性与灵活性多目标优化算法[J]. 电力工程技术, 2024, 43 (2): 248- 259
WANG An, YANG Qi, WANG Jing, et al Multi-objective optimization algorithm for economy and flexibility of cogeneration unit with heat storage[J]. Electric Power Engineering Technology, 2024, 43 (2): 248- 259
doi: 10.12158/j.2096-3203.2024.02.026
[12]   WANG C, SONG J, ZHENG W, et al Analysis of economy, energy efficiency, environment: a case study of the CHP system with both civil and industrial heat users[J]. Case Studies in Thermal Engineering, 2022, 30: 101768
doi: 10.1016/j.csite.2022.101768
[13]   刘帅东, 韩松, 荣娜, 等 计及(火用)效率的电-气-热综合能源系统多目标优化调度方法[J]. 电网技术, 2024, 48 (7): 2715- 2722
LIU Shuaidong, HAN Song, RONG Na, et al A multi-objective optimal scheduling method for integrated electricity-gas-heat energy system taking into account the exergy efficiency of the integrated energy system[J]. Power System Technology, 2024, 48 (7): 2715- 2722
[1] Yabo LUO,Shaolong YU,Feng ZHANG,Cunrong LI. Improved migrating bird algorithm for re-entrant hybrid flowshop scheduling problem with lot streaming[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1598-1607.
[2] Yu WANG,Chunrong MA,Mingyue ZHAO. Collaborative multi-task assignment of heterogeneous UAVs based on hybrid strategies based multi-objective particle swarm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 821-831.
[3] Yong LI,Yue WANG,Fuqiang LIU,Baiqing SUN,Kairu LI. Multi-task allocation framework in context of caregiver-robot collaborative elderly care[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 375-383.
[4] Yingfei ZHANG,Xiaobing HU,Hang ZHOU,Xuzeng FENG. Three-dimensional sector automatic design based on improved NSGA-II algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 413-422.
[5] Yanbo LI,Yu BU,Ruochen LI,Qisheng WU,Jianmin WEI,Junshuo CHEN. Highway energy evaluation system based on improved Delphi-entropy weight method[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2645-2654.
[6] Haiye CHEN,Zeqiang ZHANG,Wei LIANG,Lei GUO,Qiyao DUAN. Modeling and optimization of human-robot collaborative U-shaped disassembly line problem with multi-constraint[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2248-2258.
[7] Chao LIU,Hao DING,Juanjuan ZHENG,Shaofu HUANG,Zuqing LUO,Gang SHEN. Predictive modeling and adaptive optimization method for ball screw whirling milling process[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2259-2268.
[8] Hao ZOU,Guotun HU,Yunlong QIU,Wei SHI,Weifang CHEN. Multi-objective optimization of wall mass injection flow ratedistribution for hypersonic vehicle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2439-2450.
[9] Mengyuan HAO,Leike ZHANG,Xiaolian LIU,Xueni WANG,Yu TIAN. Pumps and valves joint optimization control in complex water conveyance system based on artificial rabbits optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2115-2124.
[10] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[11] Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.
[12] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[13] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[14] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[15] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.