Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (1): 138-147    DOI: 10.3785/j.issn.1008-973X.2026.01.013
    
Effects of structural parameters on lubrication performance of trapezoidal sliding beam air foil bearings
Yixuan HAN1(),Yang WU1,Chenyun GU1,Weijun FENG2,Qi AN1,*()
1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Suzhou Changheng Precision Metal Die Casting Co. Ltd, Suzhou 215534, China
Download: HTML     PDF(2781KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A finite element model of top foil for trapezoidal sliding beam air foil bearings was established based on the Kirchhoff theory, and mechanical analysis of the sliding beam was carried out in combination with the large deformation equation of the beam and the principle of minimum potential energy. The deformation calculation of the top foil, the sliding beam and the frame structure around the sliding beam was realized. The Reynolds equation was introduced to develop a fluid-structure interaction calculation model for analyzing the lubrication performance. Through MATLAB programming, the air film pressure, air film thickness, bearing friction torque and end leakage flow rate were calculated, and the reliability of the calculation model was verified by experiments. Combined with specific cases, the influences of structural parameters including standard air film thickness, sliding beam length, sliding beam width, sliding beam slope, bottom foil thickness and top foil thickness on the lubrication performance of the bearing were studied. Results showed that with the increase of initial clearance between the bearing and the rotor, the dynamic pressure region of the air film decreased, the maximum pressure of the air film rose, the friction torque decreased, and the end leakage flow rate increased. Discontinuity in the support of the top foil by the sliding beam led to discontinuity in the distribution of air film pressure and air film thickness. Adjusting the sliding beam size and the bottom foil thickness changed the support stiffness of the sliding beam to the top foil. When the support stiffness increased, the thickness of the air film decreased and the maximum pressure of the air film increased.



Key wordssliding beam air foil bearing      mechanical modeling      fluid-structure interaction      lubrication performance      numerical calculation     
Received: 04 November 2024      Published: 15 December 2025
CLC:  TH 133.35  
Corresponding Authors: Qi AN     E-mail: 19921871581@163.com;anqi@ecust.edu.cn
Cite this article:

Yixuan HAN,Yang WU,Chenyun GU,Weijun FENG,Qi AN. Effects of structural parameters on lubrication performance of trapezoidal sliding beam air foil bearings. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 138-147.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.013     OR     https://www.zjujournals.com/eng/Y2026/V60/I1/138


结构参数对梯形滑梁式空气箔片轴承润滑性能的影响

以梯形滑梁式空气箔片轴承为研究对象,依据Kirchhoff理论建立顶箔有限元模型,结合梁的大变形方程和最小位能原理对滑梁进行力学分析,实现对顶箔、滑梁及滑梁周围框架结构的形变计算. 引入Reynolds方程构建流固耦合计算模型,用于分析润滑性能. 通过MATLAB编程实现对气膜压力、气膜厚度、轴承摩擦力矩和端泄量的计算,并通过试验验证计算模型的可靠性. 结合具体算例,针对标准气膜厚度、滑梁长度、滑梁宽度、滑梁斜率、底箔厚度和顶箔厚度对轴承润滑性能的影响进行数值研究. 结果表明,随着轴承与转子初始间隙的增大,气膜动压区域减小,气膜的最大压力上升,摩擦力矩减小,端泄量增大;滑梁对顶箔的支撑不连续,导致气膜压力和气膜厚度分布不连续;调整滑梁尺寸和底箔厚度会改变滑梁对顶箔的支撑刚度,当滑梁对顶箔的支撑刚度增大时,气膜厚度减小,气膜的最大压力增大.


关键词: 滑梁式空气箔片轴承,  力学建模,  流固耦合,  润滑性能,  数值计算 
Fig.1 Basic structure of sliding beam air foil bearing
Fig.2 Structural parameters of sliding beam foil
Fig.3 Structure of bearing end face and its parameters
Fig.4 Rectangular thin plate unit
Fig.5 Simplified schematic of sliding beam foil
Fig.6 Displacement coupling of connecting beams
Fig.7 Schematic of contact between sliding beam and shaft sleeve
Fig.8 Geometric relationship of sliding beam displacements
Fig.9 Flowchart of numerical solution for lubrication performance parameters of foil bearing
Fig.10 Photographs of sliding beam foil bearing and test stand, and schematic of test principle
参数数值参数数值
L0/mm2.25R/mm14.00
d/mm1.40m27
LC/mm80.63n13
LB/mm25.00h0/μm10.00
γ0.10D0/mm2.50
t1/mm0.10Dd/mm1.60
t0/mm0.10lb/mm0.20
Tab.1 Bearing structure parameters
Fig.11 Comparison of experimental and numerical results of friction torque
Fig.12 Air film pressure distribution and corresponding thickness distribution
Fig.13 Effect of standard air film thickness on bearing lubrication performance
Fig.14 Effect of sliding beam sizes on pressure and thickness distributions of air film at λ=0
Fig.15 Effect of foil thickness on pressure and thickness distributions of air film at λ=0
[1]   WALOWIT J A, ANNO J N. Modern developments in lubrication mechanics [M]. London: Applied Science Publishers, 1975: 214–221.
[2]   HESHMAT H, WALOWIT J A, PINKUS O Analysis of gas-lubricated foil journal bearings[J]. Journal of Lubrication Technology, 1983, 105 (4): 647- 655
doi: 10.1115/1.3254697
[3]   CARPINO M, MEDVETZ L A, PENG J P Effects of membrane stresses in the prediction of foil bearing performance[J]. Tribology Transactions, 1994, 37 (1): 43- 50
doi: 10.1080/10402009408983264
[4]   CARPINO M, PENG J P, MEDVETZ L Misalignment in a complete shell gas foil journal bearing[J]. Tribology Transactions, 1994, 37 (4): 829- 835
doi: 10.1080/10402009408983365
[5]   许怀锦, 刘占生, 张广辉, 等 波箔片气体动压径向轴承气膜压力分布特点[J]. 轴承, 2008, 6: 23- 27
XU Huaijin, LIU Zhansheng, ZHANG Guanghui, et al Characteristics of film pressure distribution of bump foil gas bearings[J]. Bearing, 2008, 6: 23- 27
doi: 10.3969/j.issn.1000-3762.2008.01.008
[6]   许怀锦. 转子-箔片轴承系统动力学特性理论及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
XU Huaijin. Theoretical and experimental research on hydrodynamic characteristics of rotor-foil bearing system [D]. Harbin: Harbin Institute of Technology, 2009.
[7]   LEE D H, KIM Y C, KIM K W The dynamic performance analysis of foil journal bearings considering Coulomb friction: rotating unbalance response[J]. Tribology Transactions, 2009, 52 (2): 146- 156
doi: 10.1080/10402000802192685
[8]   KU C R, HESHMAT H Compliant foil bearing structural stiffness analysis—part II: experimental investigation[J]. Journal of Tribology, 1993, 115 (3): 364- 369
doi: 10.1115/1.2921644
[9]   RADIL K, HOWARD S, DYKAS B The role of radial clearance on the performance of foil air bearings[J]. Tribology Transactions, 2002, 45 (4): 485- 490
doi: 10.1080/10402000208982578
[10]   LI H, GENG H, WANG B, et al Feasibility investigation of a compressor rotor supported by gas foil bearings with inhomogeneous bump foils[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236 (1): 174- 183
doi: 10.1177/13506501211004668
[11]   许浩杰, 高磊, 陆俊杰,等 考虑波箔变形的波箔型气体箔片轴承润滑性能的数值研究[J]. 华东理工大学学报: 自然科学版, 2020, 46 (2): 293- 300
XU Haojie, GAO Lei, LU Junjie, et al Numerical study on the lubrication performance of bump-type gas foil bearings with considering the deformation of bump foil[J]. Journal of East China University of Science and Technology, 2020, 46 (2): 293- 300
[12]   冯凯, 胡小强, 赵雪源, 等 三瓣式气体箔片径向轴承的静动态特性[J]. 中国机械工程, 2017, 28 (15): 1826- 1835
FENG Kai, HU Xiaoqiang, ZHAO Xueyuan, et al Static and dynamic performances of a three-pad gas foil journal bearing[J]. China Mechanical Engineering, 2017, 28 (15): 1826- 1835
doi: 10.3969/j.issn.1004-132X.2017.15.010
[13]   李长林. 多滑动梁径向与层叠式止推箔片气体轴承静动特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Changlin. Static and dynamic characteristics study of multiple sliding beams journal and multi-layer thrust gas foil bearings [D]. Harbin: Harbin Institute of Technology, 2020.
[14]   LI C, DU J, YAO Y Study of load carrying mechanism of a novel three-pad gas foil bearing with multiple sliding beams[J]. Mechanical Systems and Signal Processing, 2020, 135: 106372
doi: 10.1016/j.ymssp.2019.106372
[15]   LI C, DU J, LI J, et al Linear stability and nonlinear rotor responses of the gas foil bearing with multiple sliding beams[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237: 5247- 5272
doi: 10.1177/09544062231163717
[16]   吴洋, 韩怡萱, 顾晨昀, 等 三瓣结构的滑梁式空气箔片轴承润滑力学建模及数值研究[J]. 华东理工大学学报: 自然科学版, 2025, 51 (1): 135- 146
WU Yang, HAN Yixuan, GU Chenyun, et al Lubrication mechanics model and numerical study of sliding beam type gas foil bearing with three-pad structure[J]. Journal of East China University of Science and Technology, 2025, 51 (1): 135- 146
[17]   顾晨昀, 吴洋, 韩怡萱, 等 滑梁式空气箔片轴承力学分析及疲劳寿命计算方法[J]. 华东理工大学学报: 自然科学版, 2025, 51 (2): 277- 284
GU Chenyun, WU Yang, HAN Yixuan, et al Mechanical performance and fatigue life calculation method of sliding beam air foil bearing[J]. Journal of East China University of Science and Technology, 2025, 51 (2): 277- 284
[1] Tingwei JI,Liang WANG,Fangfang XIE,Xinshuai ZHANG,Changdong ZHENG. Modeling of vortex-induced vibration system based on sparse identification of nonlinear dynamics[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 402-412.
[2] Ya-xing YIN,Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2217-2226.
[3] Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU. Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1485-1494.
[4] Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
[5] Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
[6] Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.
[7] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[8] YAO Lin, MA Da-wei, REN Jie, YAO Jian-yong, ZHONG Jian-lin, MA Wu-ning. Lubrication performance analysis of high-speed rod-less cylinder seal[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1568-1574.
[9] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[10] TAN Chao, WEI Zheng-ying, HU Fu-sheng, LI Ben-qiang, HAN Zhi-hai. Numerical analysis and experimental study of atmospheric plasma spray process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2284-2292.
[11] LI Qiang, LIU Shu-lian , YING Guang-yao, ZHENG Shui-ying. Numerical simulation for drop impact of PET bottle
considering fluid-structure interaction
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 980-986.
[12] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1729-1736.
[13] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1934-1940.