Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Numerical analysis and experimental study of atmospheric plasma spray process
TAN Chao1, WEI Zheng-ying1, HU Fu-sheng1, LI Ben-qiang1,2, HAN Zhi-hai3
1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University , Xi’an 710049, China;2. Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan 48128, United States;3. School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Download:   PDF(2590KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-physic fields coupling mathematical model was established using fluid controlling equations, heat and mass transfer equations, species transport equations and Maxwell’s electromagnetic equations, to discuss the flow field characteristics inside and outside plasma gun. The ionization and recombination reactions, as well as the effect of non-local thermal equilibrium were taken into consideration to investigate the plasma flow. On this basis, the new three dimensional model was adopted to analysis the distribution of particles’ velocity and temperature. The relative error was less than 10% comparing with measured value by DPV2000 diagnosis system. In addition, both particles’ velocity and temperature achieved maximum at the distance of 70-90 mm, this range can be selected the best spraying distance. The analysis of flight particles in the plasma flow will lay the foundation for study particles’ deposition and flattening on substrate, and provide theoretical guidance for optimization of process parameters and gun structure.



Published: 01 December 2014
CLC:  O 359  
  TG 174.44  
Cite this article:

TAN Chao, WEI Zheng-ying, HU Fu-sheng, LI Ben-qiang, HAN Zhi-hai. Numerical analysis and experimental study of atmospheric plasma spray process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2284-2292.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.12.026     OR     http://www.zjujournals.com/eng/Y2014/V48/I12/2284


等离子喷涂过程数值计算与实验研究

 应用流体控制方程、传热传质方程、粒子输运方程、Maxwell电磁场方程建立多场耦合数学模型,研究普通等离子喷枪内外的流场特性.计算中考虑等离子气体的电离与复合反应,以及非局域热平衡效应,在此基础上,采用新的三维模型分析气流中粉末颗粒的速度和温度分布,并与DPV2000诊断系统测量值进行对比,结果显示二者的相对误差小于10%.分析结果表明:颗粒的速度和温度在喷涂距离70~90 mm范围内同时达到最大,可选择此范围为最佳喷涂距离.颗粒的加热加速行为研究为其最终的沉积和扁平化奠定了基础,对工艺参数优化和喷枪结构优化提供理论指导.

[1] 吴子健,吴朝军,曾克里,等.热喷涂技术与应用[M].北京:机械工业出版社,2005: 15.
[2] 范群波,王鲁,王富耻.等离子喷涂金属/陶瓷颗粒的瞬态碰撞压力研究[J].北京理工大学学报,2003,23(2): 168-170.
FAN Qun-bo, WANG Lu, WANG Fu-chi. A study on the transient pressure of plasma sprayed metal/ceramic particles[J]. Transactions of Beijing Institute of Technology,2003, 23(2): 168-170.
[3]冯拉俊,曹凯博,雷阿利. 等离子喷涂陶瓷粒子加热加速行为的数值模拟[J]. 热加工工艺,2006,35(11):  46-51.
FENG La-jun, CAO Kai-bo, LEI A-li. Numerical simulation on calefaction and acceleration process of ceramic powders in plasma spray[J].Hot Working Technology,2006, 35(11): 46-51.
[4] 陈熙.热等离子体传热与流动[M].北京:科学出版社,2009: 75-80.
[5] LI He-ping, PFENDER E. Three dimensional modeling of the plasma spray process[J]. Journal of Thermal Spray Technology, 2007, 16 (2): 245-260.
[6] CHYOU Y P, PFENDER E. Behavior of particulates in thermal plasma flows[J]. Plasma Chemistry and Plasma Processing, 1989,9(1): 45-71.
[7] CHEN Xi, CHYOU Y P, LEE Y C, et al. Heat transfer to a particle under plasma conditions with vapor contamination from the particle[J]. Plasma Chemistry and Plasma Processing, 1985,5(2): 119-141.
[8] XIONG H B, ZHENG L L, LI L, et al. Melting and oxidation behavior of in-flight particles in plasma spray process[J]. International Journal of Heat and Mass Transfer, 2005,48: 5121-5133.
[9] KANTA A F, PLANCHE M P, MONTAVON G, et al. In-flight and upon impact particle characteristics modeling in plasma spray process[J]. Surface & Coatings Technology,2010,204: 1542-1548.
[10] ETTOUIL F B, MAZHOROVA O, PATEYRON B, et al. Predicting dynamic and thermal histories of agglomerated particles injected within a d.c. plasma jet[J]. Surface & Coatings Technology,2008,202: 4491-4495.
[11] 杨庆功,李萌盛. 双流体模型模拟喷涂飞行区内的速度分布[J].合肥工业大学学报:自然科学版,2006,29(9): 1120-1123.
YANG Qing-gong, LI Meng-sheng. Simulation of the velocity distribution in the spray cone based on the two-phase flow model[J].Journal of HeFei University of Technology, 2006, 29(9): 1120-1123.
[12] 王汉功, 袁晓静, 侯根良,等. 超音速火焰喷涂Ni粒子特性数值仿真[J].兵工学报,2006,27(2): 310-314.
WANG Han-gong, YUAN Xiao-jing, HOU Gen-liang et al. Dynamic simulation of Ni particle behaviors in supersonic oxygen/ air fuel spray process[J]. ACTA ARMAMENT ARII, 2006, 27(2): 310-314.
[13] RAT V, ANDR P, AUBRETON J, et al. Two-temperature transport coefficients in argon-hydrogen plasmasⅠ:elastic processes and collision integrals[J]. Plasma Chemistry and Plasma Processing, 2002, 22 (4): 453-474.
[14] ANDR P, AUBRETON J, ELCHINGER M F, et al. A new modified pseudoequilibrium calculation to determine the composition of hydrogen and nitrogen plasmas at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing, 2000, 21(1): 83-105.
[15] ZHANG W. Integration of process diagnostics and three dimensional simulations in thermal spraying[D]. New York : Stony Brook University, 2008.
[16] RAMACHANDRAN K, NISHIYAMA H. Three-dimensional effects of carrier gas and particle injections on the thermo-fluid fields of plasma jets[J].Joural of Physics D: Applied Physics,2002, 35: 307-317.
[17] TALBOT L. Thermophoresis—A review rarefied gas dynamics[M].New York: AIAA Book,1981: 467-488.
[18] 王汉功,查柏林.超音速喷涂技术[M].北京:科学出版社,2005: 18-63,179-195.
[19] 周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991: 9151.

No related articles found!