Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2217-2226    DOI: 10.3785/j.issn.1008-973X.2023.11.009
    
Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method
Ya-xing YIN(),Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN*()
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Download: HTML     PDF(1912KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mesoscopic multi-velocity component lattice Boltzmann fluid-structure interaction model, combined with the large eddy simulation (LES) method, was proposed in order to investigate the in-flow shock and flow-induced vibration characteristics during static mixing. The aim is to explore the static mixing process, including characteristics such as strong shear, backflow recoil, wall impact, and other factors. Taking static mixer as the research object, the model of static mixing process was established, and the weak coupling solution strategy of flow field and structure field was proposed. The proposed method was used to study the effects of different displacement deformations, different inlet velocities and different static mixer blade angles on the vibration response of the tube wall. Results show that blade action can convert the axial velocity of the fluid into tangential and radial velocity. When the inlet velocity is relatively large, the internal flow field has obvious influence on the vibration frequency and amplitude of the static mixer. Changing the mixer blade angle will affect the shear drainage effect of the flow field, and has significant effects on the longitudinal and axial displacement, mainly in the low frequency band.



Key wordsstatic mixing      lattice Boltzmann method (LBM)      fluid-structure interaction      intensive shear      flow-induced vibration     
Received: 09 December 2022      Published: 11 December 2023
CLC:  O 353.4  
Fund:  国家自然科学基金资助项目(52175124);浙江省重点科学基金资助项目(LZ21E050003)
Corresponding Authors: Da-peng TAN     E-mail: yinyaxinga@163.com;tandapeng@zjut.edu.cn
Cite this article:

Ya-xing YIN,Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2217-2226.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.009     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2217


基于格子Boltzmann的混合过程建模与流致振动特性

为了探究静态混合过程中的内流冲击与流致振动特性, 提出结合大涡模拟(LES)方法的介观多速度分量格子Boltzmann流固耦合模型. 针对静态混合过程伴随强剪切、回流反冲、壁面冲击等特点, 以静态混合器为研究对象, 对静态混合过程建模, 并提出流场-结构场弱耦合求解策略. 通过此方法研究静态混合器不同位置位移形变、不同入口速度和不同静态混合器叶片夹角对管壁振动响应的影响. 结果表明, 叶片作用可以将流体轴向速度转换为切向和径向速度;在入口流速相对较大时, 内部流场对静态混合器的振动频率及振幅的影响较为明显;改变混合叶片夹角, 会影响流场剪切引流作用, 对其纵向位移和轴向位移影响显著, 且主要影响低频段.


关键词: 静态混合,  格子Boltzmann方法(LBM),  流固耦合,  强剪切,  流致振动 
Fig.1 Velocity model of D3Q27
Fig.2 Flowchart of fluid-structure interaction calculation for LBM
Fig.3 Diagram of static mixed space structure
名称 参数 数值
静态混合器 L0/mm 550
R/mm 70
h/mm 5
d/mm 10
ρ /(kg·m?3 7 850
E/GPa 210
μ 0.3
流体参数 ρw /(kg·m?3 998
μw /(Pa·s) 0.001
Tab.1 Physics parameters of static mixer and fluid
Fig.4 Hydrodynamic model of fluid structure coupling
网格编号 M N Ar/(10?7 m)
1 500 000 102 673 1.18
2 750 000 154 432 1.09
3 1 254 000 174 300 1.04
4 1 788 900 193 246 1.05
5 2 453 800 246 321 1.04
Tab.2 Grid independence verification
Fig.5 Comparison of wall displacement curve of static mixer
Fig.6 Schematic diagram of circumferential monitoring points and deformation of static mixer under internal fluid excitation
Fig.7 RMS amplitude of static mixer along x axial direction
Fig.8 Displacement response of each monitoring point in circumferential direction
Fig.9 Flow field velocity distribution nephogram of different inlet velocity
Fig.10 Vibration response curves of static mixer wall under fluid excitation at different flow rates
Fig.11 Velocity distribution diagram of mixed elements with different angles
Fig.12 Effect of different blades on wall displacement response of mixer
Fig.13 Effect of different blades on wall amplitude-frequency response of mixer
[1]   SOMAN S S, MADHURANTHAKAM C Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers[J]. Chemical Engineering and Processing, 2017, 122: 31- 43
doi: 10.1016/j.cep.2017.10.001
[2]   MIRELLA C, GIUSEPPINA M, ALESSANDRO P Computational fluid dynamics modeling of corrugated static mixers for turbulent applications[J]. Industrial and Engineering Chemistry Research, 2012, 51 (49): 15986- 15996
doi: 10.1021/ie300398z
[3]   GHANEM A, LEMENAND T, VALLE D D, et al Static mixers: mechanisms, applications, and characterization methods: a review[J]. Chemical Engineering Research and Design, 2014, 92 (2): 205- 228
doi: 10.1016/j.cherd.2013.07.013
[4]   纪冲, 龙源, 方向, 等 钢质圆柱壳在侧向局部冲击荷载下的变形及失效破坏[J]. 振动与冲击, 2013, 32 (15): 121- 125
JI Chong, LONG Yuan, FANG Xiang, et al Dynamic response and perforation failure of cylindrical shell subjected to lateral local impulsive loading[J]. Journal of Vibration and Shock, 2013, 32 (15): 121- 125
[5]   VALDES J P, KAHOUADII L, MATAR O K. Current advances in liquid-liquid mixing in static mixers: a review. Chemical Engineering Research and Design, 2022, 177: 694-731.
[6]   刘晨, 崔醒, 尹德明, 等 新型静态混合器的数值模拟及优化[J]. 轻金属, 2021, (10): 19- 22
LIU Chen, CUI Xing, YIN De-ming, et al Numerical simulation and optimization of a novel static mixer[J]. Light Metals, 2021, (10): 19- 22
[7]   MURASIEWICZ H, JAWORSKI Z Modelowanie metodami URANS i LES przepływu dwufazowego w mieszalniku statycznym z wkładkami typu Kenics[J]. Inżynieria I Aparatura Chemiczna, 2010, (3): 79- 80
[8]   孟辉波, 蒙彤, 禹言芳, 等 Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73 (8): 3541- 3552
MENG Hui-bo, MENG Tong, YU Yan-fang, et al Turbulent heat transfer and mixing enhancement characteristics in Ross LPD Static Mixer[J]. CIESC Journal, 2022, 73 (8): 3541- 3552
[9]   AIDUN C K, CLAUSEN J R Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42 (1): 439- 472
doi: 10.1146/annurev-fluid-121108-145519
[10]   HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al Comparative analysis of different static mixers performance by CFD technique: an innovative mixer[J]. Chinese Journal of Chemical Engineering, 2020, (3): 672- 684
[11]   MURASIEWICZ H, ZAKRZEWSKA B Large eddy simulation of turbulent flow and heat transfer in a Kenics static mixer[J]. Chemical and Process Engineering, 2019, 40 (1): 87- 99
[12]   孟辉波, 禹言芳, 吴剑华, 等 静态混合器内瞬态壁压波动特性实验研究[J]. 哈尔滨工程大学学报, 2011, 32 (5): 690- 696
MENG Hui-bo, YU Yan-fang, WU Jian-hua, et al Experimental research on the fluctuation characteristics of instantaneous tube-pressure signals in a static mixer[J]. Journal of Harbin Engineering University, 2011, 32 (5): 690- 696
[13]   NIKOLIC M, RAJKOVIC M Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends[J]. Journal of Fluids and Structures, 2005, 22 (2): 173- 195
[14]   LECLAIRE S, VIDAL D, FRADETTE L, et al Validation of the pressure drop-flow rate relationship predicted by lattice Boltzmann simulations for immiscible liquid-liquid flows through SMX static mixers[J]. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers, 2020, 153: 350- 368
doi: 10.1016/j.cherd.2019.10.035
[15]   权登辉, 杨晓军, 刘龙, 等 Kenics型静态混合器性能优化的数值与应用分析[J]. 化工机械, 2021, 48 (2): 203- 208
QUAN Deng-hui, YANG Xiao-jun, LIU Long, et al Numerical and application analysis of performance optimization of Kenics static mixer[J]. Chemical Engineering and Machinery, 2021, 48 (2): 203- 208
[16]   禹言芳, 陈雅鑫, 孟辉波, 等 Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40 (Suppl. 2): 30- 39
YU Yan-fang, CHEN Ya-xin, MENG Hui-bo, et al Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer[J]. Chemical Industry and Engineering Progress, 2021, 40 (Suppl. 2): 30- 39
[17]   SUGA K, KUWATA Y, TAKASHIMA K, et al A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows[J]. Computers and Mathematics with Applications, 2015, 69 (6): 518- 529
doi: 10.1016/j.camwa.2015.01.010
[18]   D’HUMIERES B D. Generalized lattice-Boltzmann equations [C]// 18th International Symposium, Rarefied Gas Dynamics. Vancouver: American Institute of Aeronautics and Astronautics, 1994: 450-458.
[19]   穆罕默德·阿卜杜勒马吉德. 格子玻尔兹曼方法[M]. 杨大勇, 译. 北京: 电子工业出版社, 2015.
[20]   陈艳燕. 晶格玻尔兹曼方法研究固液界面特征下的血液流[D]. 上海: 中国科学院上海应用物理研究所, 2008.
CHEN Yan-yan. Study of blood flow at solid-liquid interface based on lattice Boltzmann method[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2008.
[21]   NEWMARK N M A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division Asce, 1959, 85 (1): 67- 94
doi: 10.1061/JMCEA3.0000081
[22]   YU D Z, MEI R W, LUO L S, et al Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39 (5): 329- 367
doi: 10.1016/S0376-0421(03)00003-4
[1] Xia-lin LIU,Sheng-bin ZHANG,Quan CHEN,Heng SHU,Shang-ge LIU. Code development and verification for weak coupling of seepage-stress based on TOUGH2 and FLAC3D[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1485-1494.
[2] Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
[3] Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
[4] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[5] LI Qiang, LIU Shu-lian , YING Guang-yao, ZHENG Shui-ying. Numerical simulation for drop impact of PET bottle
considering fluid-structure interaction
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 980-986.
[6] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1729-1736.
[7] NIE De-Meng, LIN Jian-Zhong. Lattice Boltzmann model for particle Brownian motion[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1438-1442.