|
|
|
| Predictive modeling and adaptive optimization method for ball screw whirling milling process |
Chao LIU1,2,3( ),Hao DING1,Juanjuan ZHENG1,4,Shaofu HUANG1,3,Zuqing LUO1,Gang SHEN1 |
1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan 232000, China 2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400030, China 3. Institute ofEnvironment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China 4. College of Mathematics and Statistics, Chongqing University, Chongqing 400030, China |
|
|
|
Abstract An adaptive dynamic optimization hybrid model that combined improved sparrow search algorithm for optimizing backpropagation (ISSA-BP) and non-dominated sorting genetic algorithm--III (NSGA-III) was proposed to address the highly nonlinear problem between machining parameters and various indicators in whirling milling. The effect of five improvement strategies, population size, and the ratio of searchers to vigilantes on the sparrow search algorithm was compared, and an appropriate network structure was determined. Then an ISSA-BP prediction model with four indicators was established. The predictive performance of the proposed ISSA-BP model was compared with four other algorithms. The relative prediction errors for all four indicators were less than 2%, verifying the superiority of the model. The ISSA-BP model was encapsulated and embedded into NSGA-III as a fitness prediction function, and the Pareto optimal solution set was solved, which provided guidance for improving machining stability and ensuring machining quality in screw whirling milling.
|
|
Received: 27 October 2024
Published: 30 October 2025
|
|
|
| Fund: 国家自然科学基金资助项目(52205321, 52275228, U21A20125);安徽理工大学环境友好材料与职业健康研究院 (芜湖) 资助项目(ALW2021YF06); 安徽理工大学研究生创新基金资助项目(2023CX2077). |
丝杠旋铣预测建模与自适应优化方法
针对丝杠旋铣加工参数与各指标之间的高度非线性问题,提出融合改进麻雀搜索算法优化反向传播(ISSA-BP)和非支配排序遗传算法(NSGA-III)的自适应动态优化混合模型. 对比5种改良策略、种群规模及搜索者与警戒者比例对麻雀搜索算法的影响,确定适宜的网络结构,建立4个指标的ISSA-BP预测模型. 通过与其他4种算法的预测性能对比可知,提出的ISSA-BP模型对4个指标的预测相对误差均低于2%,验证了模型的优越性. 将ISSA-BP模型封装嵌入NSGA-III作为适应度预测函数,求解得到帕累托最优解集,为丝杠旋铣加工在提升加工稳定性、保障加工质量方面提供指导.
关键词:
旋风铣削,
预测建模,
多目标优化,
非支配排序遗传算法(NSGA-III)
|
|
| [1] |
宋现春, 王笑, 贾鑫鹏, 等 基于滚珠丝杠副滚珠载荷分布的摩擦力矩计算方法研究[J]. 机电工程技术, 2024, 53 (4): 138- 142 SONG Xianchun, WANG Xiao, JIA Xinpeng, et al Research on calculation method of friction moment based on ball load distribution of ball screw pair[J]. Mechanical and Electrical Engineering Technology, 2024, 53 (4): 138- 142
|
|
|
| [2] |
李中凯, 孙冉, 邹光宇 平面滚珠丝杠副多结合面建模与动态特性分析[J]. 振动测试与诊断, 2023, 43 (5): 960- 966 LI Zhongkai, SUN Ran, ZOU Guangyu Modeling and dynamic characteristics analysis of multiple joint surfaces in flat ball screw pairs[J]. Journal of Vibration, Measurement and Diagnosis, 2023, 43 (5): 960- 966
|
|
|
| [3] |
陈哲钥, 张建业, 吕张成, 等 基于滚珠丝杠传动的机床进给系统建模与分析[J]. 机床与液压, 2023, 51 (13): 166- 171 SUN Zheyue, ZHANG Jianye, LV Zhangcheng, et al Modeling and analysis of machine tool feed system based on ball screw transmission[J]. Machine Tool and Hydraulics, 2023, 51 (13): 166- 171
doi: 10.3969/j.issn.1001-3881.2023.13.027
|
|
|
| [4] |
LIU C, HE Y, LI Y F, et al Predicting residual properties of ball screw raceway in whirling milling based on machine learning[J]. Measurement, 2021, 173 (25): 108605
|
|
|
| [5] |
SREEJITH P S, NGOI B K A Dry machining: machining of the future[J]. Journal of Materials Processing Technology, 2000, 101 (1): 287- 291
|
|
|
| [6] |
薛海鹏, 房磊琦, 蔡飞, 等 AlCrBSiN复合涂层制备及高速干式切削性能[J]. 中国表面工程, 2023, 36 (4): 118- 128 XUE Haipeng, FANG Leiqi, CAI Fei, et al Deposition and high-speed dry cutting performance of AlCrBSiN-coated cutters[J]. China Surface Engineering, 2023, 36 (4): 118- 128
|
|
|
| [7] |
王海艳, 周秩同, 武晔, 等 基于斜角切削理论的钛合金螺旋铣孔切削力建模[J]. 中国机械工程, 2023, 34 (2): 142- 147 WANG Haiyan, ZHOU Zhitong, WU Ye, et al Modeling of cutting force for titanium alloy spiral milling holes based on oblique cutting theory[J]. China Mechanical Engineering, 2023, 34 (2): 142- 147
|
|
|
| [8] |
ZHENG F Y, ZHANG M G, ZHANG W Q, et al The fundamental roughness model for face-milling spiral bevel gears considering run-outs[J]. International Journal of Mechanical Sciences, 2019, 156 (3): 272- 282
|
|
|
| [9] |
GUPTA M K, KORKMAZ M E, SARIKAYA M, et al In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: an analytical approach and experimental study[J]. Mechanical Systems and Signal Processing, 2022, 168 (1): 108772
|
|
|
| [10] |
NEMETZ A W, DAVESW, KLUNSNERl T, et al FE temperature and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms[J]. Journal of Materials Processing Technology, 2018, 256 (6): 98- 108
|
|
|
| [11] |
孙庆贞, 魏学涛, 张涛, 等 运用响应面法的Ti-6Al-4VELI钛合金铣削表面粗糙度预测模型[J]. 机械科学与技术, 2024, 43 (4): 643- 649 SUN Qingzhen, WEI Xuetao, ZHANG Tao, et al Prediction model for surface roughness of Ti-6Al-4V ELI titanium alloy milling using response surface methodology[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43 (4): 643- 649
|
|
|
| [12] |
YANG S S, HU W P, ZHAN Z X, et al A novel model considering combined effects of as-built roughness and notch for multiaxial fatigue life prediction of L-PBF Ti6Al4V[J]. Theoretical and Applied Fracture Mechanics, 2024, 131 (3): 104390
|
|
|
| [13] |
LIU Y J, YIN Y T, ZHANG S J Multi-objective optimization of high-power fiber laser cutting process using data augmentation-based ANN-Adam model[J]. Optical Fiber Technology, 2024, 87 (6): 103875
|
|
|
| [14] |
WEI J C, HE W B, LIN C G, et al Optimizing process parameters of in-situ laser assisted cutting of glass–ceramic by applying hybrid machine learning models[J]. Advanced Engineering Informatics, 2024, 62 (4): 102590
|
|
|
| [15] |
JIA S, WANG S, LI S Y, et al Integrated multi-objective optimization of rough and finish cutting parameters in plane milling for sustainable machining considering efficiency, energy, and quality[J]. Journal of Cleaner Production, 2024, 471 (15): 143406
|
|
|
| [16] |
DING H, WANG Z C, GUO Y C Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm[J]. Infrared Physics and Technology, 2020, 108 (5): 103337
|
|
|
| [17] |
SHAH D R, PANCHOLI N, GAJERA H, et al Investigation of cutting temperature, cutting force and surface roughness using multi-objective optimization for turning of Ti-6Al-4 V (ELI)[J]. Materials Today: Proceedings, 2022, 50 (5): 1379- 1388
|
|
|
| [18] |
YAN J H, LI L Multi-objective optimization of milling parameters: the trade-offs between energy, production rate and cutting quality[J]. Journal of Cleaner Production, 2013, 52 (1): 462- 471
|
|
|
| [19] |
SHRIVASTAVA P K, PANDEY A K Multi-objective optimization of cutting parameters during laser cutting of titanium alloy sheet using hybrid approach of genetic algorithm and multiple regression analysis[J]. Materials Today: Proceedings, 2018, 5 (11): 24710- 24719
doi: 10.1016/j.matpr.2018.10.269
|
|
|
| [20] |
XUE J, SHEN B A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8 (1): 22- 34
doi: 10.1080/21642583.2019.1708830
|
|
|
| [21] |
邬贵昌, 韦文山, 李尚平, 等 基于混沌的多策略优化麻雀算法及应用[J]. 微电子学与计算机, 2022, 39 (12): 21- 30 WU Guichang, WEI Wenshan, LI Shangping, et al Chaos based multi strategy optimization sparrow algorithm and its application[J]. Microelectronics and Computer, 2022, 39 (12): 21- 30
|
|
|
| [22] |
FENG H, MA W, YIN C B, et al Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127 (7): 103722
|
|
|
| [23] |
LI Z Q, DU Y B, HE G H, et al Parameters optimization for single-track laser cladding based on MPA-SVR and A-NSGA-III[J]. Optics and Laser Technology, 2024, 169 (2): 110069
|
|
|
| [24] |
FAHEEM A, HASAN F, KHAN A, et al Parametric optimization of electric discharge machining of Ni Ti based shape memory alloy using NSGA II with TOPSIS55.65[J]. Journal of Materials Research and Technology, 2023, 26 (19): 1306- 1324
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|