|
|
|
| Multi-objective optimization of wall mass injection flow ratedistribution for hypersonic vehicle |
Hao ZOU1( ),Guotun HU2,*( ),Yunlong QIU1,3,Wei SHI2,Weifang CHEN1 |
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China 2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China 3. Advanced Aircraft Research Center, Huanjiang Laboratory, Zhuji 311800, China |
|
|
|
Abstract A hypersonic vehicle, where the injection surface was reasonably partitioned, was analyzed in order to enhance the cost-effectiveness of wall mass injection for high-speed vehicles. Numerical simulations were conducted to get sample data in order to construct surrogate models. A multi-objective optimization of the injection flow rates of different surface partitions was conducted based on surrogate models by using non-dominated sorting genetic algorithm II (NSGA-II), targeting the reduction of total heat flux and drag. The uniform mass injection scheme reduced total drag by 14.05%, friction drag by 38%, total heat flux by 35.92%, and peak heat flux by 1.38% compared with the no mass injection case under the conditions of 50 km altitude, Mach 15 freestream, 5° angle of attack, and a total air injection flow rate of 50 g/s. The optimized mass injection case reduced total drag by 22.56%, friction drag by 53.96%, total heat flux by 53.40%, and peak heat flux by 30.77%. Results indicate that the optimized mass injection case injects more cooling medium on regions with high aerodynamic and thermal loads, such as the nose and leading edges of the wings compared with the uniform mass injection case. This optimized case leverages the attachment and cumulative effects of the injected mass flow along the high-speed main flow, improves the distribution of surface film thickness and significantly enhances both the drag and heat reduction effects and efficiency of the overall and the critical local location, while maintaining a constant total injection flow rate.
|
|
Received: 11 November 2024
Published: 30 October 2025
|
|
|
|
Corresponding Authors:
Guotun HU
E-mail: 22224038@zju.edu.cn;huguotun@126.com
|
高马赫数飞行器壁面质量引射流量分配多目标优化
为了提升高速飞行器壁面质量引射减阻降热的综合效费比,针对高马赫数飞行器的工程外形,对引射表面进行合理分区,通过数值模拟获取样本构造代理模型. 以降低飞行器表面总热流和总阻力为优化目标,基于代理模型使用第二代非支配排序算法,对飞行器表面各分区引射流量进行多目标优化. 在高度为50 km,来流马赫数为15,攻角为5°,引射空气总流量为50 g/s的工况下,相对无质量引射方案,均匀质量引射方案的总阻力降低14.05%,摩擦阻力降低38%,总热流降低35.92%,峰值热流密度降低1.38%. 优化质量引射方案的总阻力降低22.56%,摩擦阻力降低53.96%,总热流降低53.40%,峰值热流密度降低30.77%. 研究结果表明,与均匀质量引射方案相比,优化质量引射方案侧重于将引射流量集中在气动力热负荷较大的头部及翼前缘区域,利用引射工质在高速主流作用下的附壁及沿程累积效应,改善了飞行器表面气膜厚度的分布,在维持引射总流量不变的前提下有效提高了整体和局部关键位置的减阻降热效果及效率.
关键词:
壁面质量引射,
减阻降热,
高马赫数飞行器,
多目标优化,
引射流量分配
|
|
| [1] |
朱广生, 段毅, 姚世勇, 等 壁面质量引射对高速飞行器减阻降热影响的研究[J]. 空气动力学学报, 2023, 41 (8): 59- 70 ZHU Guangsheng, DUAN Yi, YAO Shiyong, et al Effects of wall mass injection on drag and heat reduction characteristics of high-speed flight vehicles[J]. Acta Aerodynamica Sinica, 2023, 41 (8): 59- 70
doi: 10.7638/kqdlxxb-2023.0136
|
|
|
| [2] |
栾芸, 贺菲, 王建华 临近空间飞行器发汗冷却研究进展[J]. 推进技术, 2023, 44 (1): 6- 20 LUAN Yun, HE Fei, WANG Jianhua Review on transpiration cooling for near-space aircraft[J]. Journal of Propulsion Technology, 2023, 44 (1): 6- 20
|
|
|
| [3] |
贾洲侠, 张伟, 吴振强, 等 飞行器主动热防护及试验技术进展[J]. 强度与环境, 2017, 44 (5): 13- 20 JIA Zhouxia, ZHANG Wei, WU Zhenqiang, et al Review of active thermal protection system and test technology for flight vehicle[J]. Structure and Environment Engineering, 2017, 44 (5): 13- 20
|
|
|
| [4] |
陈忠灿, 张凯, 李枫, 等 发汗冷却技术在飞行器上的应用及展望[J]. 清华大学学报: 自然科学版, 2024, 64 (2): 318- 336 CHEN Zhongcan, ZHANG Kai, LI Feng, et al Application and research progress of transpiration cooling technology in flight vehicles[J]. Journal of Tsinghua University: Science and Technology, 2024, 64 (2): 318- 336
|
|
|
| [5] |
KEARNEY D W, KAYS W M, MOFFAT R J Heat transfer to a strongly accelerated turbulent boundary layer: some experimental results, including transpiration[J]. International Journal of Heat and Mass Transfer, 1973, 16 (6): 1289- 1305
doi: 10.1016/0017-9310(73)90136-1
|
|
|
| [6] |
MEINERT J, HUHN R, SERBEST E, et al Turbulent boundary layers with foreign gas transpiration[J]. Journal of Spacecraft and Rockets, 2001, 38 (2): 191- 198
doi: 10.2514/2.3693
|
|
|
| [7] |
余磊, 姜培学, 任泽霈 发汗冷却湍流换热过程的数值模拟[J]. 清华大学学报: 自然科学版, 2003, 43 (12): 1668- 1671 YU Lei, JIANG Peixue, REN Zepei Numerical simulation for turbulent transpiration cooling processes[J]. Journal of Tsinghua University: Science and Technology, 2003, 43 (12): 1668- 1671
|
|
|
| [8] |
HUANG Z, XIONG Y B, LIU Y Q, et al Experimental investigation of full-coverage effusion cooling through perforated flat plates[J]. Applied Thermal Engineering, 2015, 76: 76- 85
doi: 10.1016/j.applthermaleng.2014.11.056
|
|
|
| [9] |
CHRISTOPHER N, PETER M J, KLOKER J M, et al. DNS of turbulent flat-plate flow with transpiration cooling [J]. International Journal of Heat and Mass Transfer, 2020, 157: 119972.
|
|
|
| [10] |
ZHANG Z H, SUN X C, WANG X, et al. Flow structure and heat transfer of transpiration cooling by using a LBM: the effects of wall blowing and spatially nonuniform injection [J]. International Communications in Heat and Mass Transfer, 2021, 127: 105491.
|
|
|
| [11] |
FOGAROLI R P, SAYDAH A R Turbulent heat-transfer and skin-friction measurements on a porous cone with air injection at high Mach numbers[J]. AIAA Journal, 1966, 4 (6): 1116- 1117
doi: 10.2514/3.3627
|
|
|
| [12] |
CEBECI T Calculation of compressible turbulent boundary layers with heat and mass transfer[J]. AIAA Journal, 1971, 9 (6): 1091- 1097
doi: 10.2514/3.49920
|
|
|
| [13] |
SREEKANTH, REDDY N M. Transpiration cooling analysis at hypersonic Mach numbers by using Navier-Stokes equations: AIAA 94-2075 [R]. Springs, Colorado: AIAA, 1994.
|
|
|
| [14] |
SREEKANTH, REDDY N M. Numerical simulation of transpiration cooling over blunt bodies at hypersonic mach numbers: AIAA 95-2082 [R]. Sandiego: AIAA, 1995.
|
|
|
| [15] |
YANG X, BADCOCK K, RICHARDS B, et al. Numerical simulation of film cooling in hypersonic flows: AIAA 2003-3631 [R]. Orlando: AIAA, 2003.
|
|
|
| [16] |
HOMBSCH M, OLIVIER H Film cooling in laminar and turbulent supersonic flows[J]. Journal of spacecraft and rockets, 2013, 50 (4): 742- 753
doi: 10.2514/1.A32346
|
|
|
| [17] |
熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京: 清华大学, 2013: 109-116. XIONG Yanbin. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling [D]. Beijing: Tsinghua University, 2013: 109-116.
|
|
|
| [18] |
黄拯. 高温与超音速条件下发汗冷却基础问题研究[D]. 北京: 清华大学, 2015: 22-67. HUANG Zheng. Research on the transpiration cooling in supersonic and high temperature flow [D]. Beijing: Tsinghua University, 2015: 22-67.
|
|
|
| [19] |
王丽燕, 檀妹静, 王振峰, 等. 低速引射对高超声速飞行器气动加热影响[J]. 南京航空航天大学学报, 2019, 51(4): 503-511. WANG Liyan, TAN Meijing, WANG Zhenfeng, et al. Impact of low speed ejection on aerodynamic heating of hypersonic aircrafts [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(4): 503-511.
|
|
|
| [20] |
戴嘉鹏, 周禹, 李冬, 等 超声速主流下非稳态相变发汗冷却过程研究[J]. 工程热物理学报, 2024, 45 (2): 471- 477 DAI Jiapeng, ZHOU Yu, LI Dong, et al Study on the unsteady transpiration cooling within the supersonic mainstream[J]. Journal of Engineering Thermophysics, 2024, 45 (2): 471- 477
|
|
|
| [21] |
WU N, WANG J H, HE F, et al Optimization transpiration cooling of nose cone with non-uniform permeability[J]. International Journal of Heat and Mass Transfer, 2018, 127 (PB): 882- 891
|
|
|
| [22] |
胡文杰, 邱云龙, 邹昊, 等 高速飞行器边界层质量引射降热减阻技术流量分区优化研究[J]. 力学学报, 2024, 56 (6): 1688- 1701 HU Wenjie, QIU Yunlong, ZOU Hao, et al Optimization study of boundary layer mass injection flow rate by zonal divisions for heat and drag reduction of high-speed vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (6): 1688- 1701
doi: 10.6052/0459-1879-23-512
|
|
|
| [23] |
LIU T L, LIU Y F, DING R, et al Numerical simulation and structural optimization of transpiration cooling with gradient porous matrix in supersonic condition[J]. International Journal of Thermal Sciences, 2024, 198 (84): 108871
|
|
|
| [24] |
杨雨欣, 陈烨斯, 杨华, 等 升力体构型的边缘钝化方法及气动性能分析[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1242- 1250 YANG Yuxin, CHEN Yesi, YANG Hua, et al Blunt method of lift body configuration and aerodynamic performance analysis[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1242- 1250
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|