|
|
Three-dimensional sector automatic design based on improved NSGA-II algorithm |
Yingfei ZHANG1( ),Xiaobing HU1,Hang ZHOU2,*( ),Xuzeng FENG3 |
1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China 2. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China 3. Zhejiang Dahua Technology Limited Company, Hangzhou 310053, China |
|
|
Abstract An improved non-dominated sorting genetic algorithm II (NSGA-II) was proposed in order to address the challenges of time-consuming manual airspace sectorization and the difficulty in comparing the quality of different sectorization schemes. A three-dimensional multi-objective optimization model for sectorization was established by using a grid-region-sector hierarchy in order to balance controllers’ workload within sectors and reduce workload differences between sectors. A fitness evaluation operator, a probability-adaptive combination crossover operator and a dynamic mutation operator were incorporated in the NSGA-II algorithm in order to enhance the number of feasible solutions, solution diversity and computational efficiency. A simulation was conducted for the automatic 3D sectorization of Xi'an high-altitude airspace. Results showed that the optimized scheme improved workload balance within sectors by 37% and reduced inter-sector workload by 24% compared with the current sectorization configuration. The proposed improved NSGA-II provided a broader range of options for decision-makers with varying preferences compared with traditional weighted multi-objective optimization algorithms.
|
Received: 27 December 2023
Published: 11 February 2025
|
|
Fund: 天津市自然科学基金多元投入青年项目(23JCQNJC00080);中央高校基本科研业务费中国民航大学专项资助项目(3122020075). |
Corresponding Authors:
Hang ZHOU
E-mail: zhangyf9507@163.com;h-zhou@cauc.edu.cn
|
基于改进的NSGA-II算法的三维扇区自动划设
针对人工划分空域扇区耗时长且难以比较不同扇区划分方案优劣的问题,提出改进的快速非支配排序遗传算法(NSGA-II). 以均衡管制员扇区内工作负荷和减少管制员扇区间工作负荷为目标,基于网格-区域块-扇区层级提出三维扇区划分多目标优化模型. 为了提高种群的可行解数量、多样性及算法的解算速度,在NSGA-II算法中引入适应度评估算子、变概率组合交叉算子和动态变异算子. 对西安高空空域进行三维扇区自动划设的仿真模拟. 结果表明,与实际划分构型相比,优化后的方案将扇区内工作负荷均衡性提高了37%,扇区间工作负荷减少了24%;与传统的加权多目标优化算法相比,基于改进的NSGA-II算法得到的扇区划分方案可以为不同偏好的决策者提供更广泛的选择.
关键词:
空中交通管制,
三维扇区划设,
多目标优化,
改进NSGA-II算法,
选择策略
|
|
[1] |
YOUSEFI A, DONOHUE G. Temporal and spatial distribution of airspace complexity for air traffic controller workload-based sectorization [C]// AIAA 4th Aviation Technology, Integration and Operations Forum. Chicago: AIAA, 2004(2): 822-835.
|
|
|
[2] |
戴福青, 王丹 基于改进区域生长算法的终端区扇区优化[J]. 中国民航飞行学院学报, 2017, 28 (3): 14- 18 DAI Fuqing, WANG Dan Terminal area sector operation optimization based on improved region growing algorithm[J]. Journal of Civil Aviation Flight University of China, 2017, 28 (3): 14- 18
|
|
|
[3] |
TANG J, ALAM S, LOKAN C, et al A multi-objective approach for dynamic airspace sectorization using agent based and geometric models[J]. Transportation Research Part C: Emerging Technologies, 2012, 21 (1): 89- 121
doi: 10.1016/j.trc.2011.08.008
|
|
|
[4] |
BRINTON C R, PLEDGIE S. Airspace partitioning using flight clustering and computational geometry [C]// Proceedings of 27th Digital Avionics Systems Conference. Washington, DC: IEEE, 2008: 3. B. 3- 1-3. B. 3-10.
|
|
|
[5] |
高伟, 陈姝含, 叶志坚, 等 基于谱聚类的扇区划分[J]. 火力与指挥控制, 2021, 46 (12): 32- 38 GAO Wei, CHEN Shuhan, YE Zhijian, et al Spectral clustering based sector division[J]. Firepower and Command Control, 2021, 46 (12): 32- 38
|
|
|
[6] |
林福根, 温祥西, 吴明功, 等 基于Voronoi图和改进K-means的扇区优化研究[J]. 西北工业大学学报, 2023, 41 (1): 170- 179 LIN Fugen, WEN Xiangxi, WU Minggong, et al Research on airspace sector optimization based on Voronoi diagram and improved K-means algorithm[J]. Journal of Northwestern Polytechnical University, 2023, 41 (1): 170- 179
doi: 10.1051/jnwpu/20234110170
|
|
|
[7] |
徐灿, 田勇, 牛科新, 等 考虑空域功能性的终端区内三维扇区划设方法研究[J]. 科学技术与工程, 2022, 22 (28): 12674- 12682 XU Can, TIAN Yong, NIU Kexin, et al Three-dimensional sectorization in terminal area considering airspace function[J]. Science Technology and Engineering, 2022, 22 (28): 12674- 12682
|
|
|
[8] |
王莉莉, 贾铧霏 基于复杂度分析的空域扇区划分[J]. 南京航空航天大学学报, 2017, 49 (1): 140- 146 WANG Lili, JIA Huafei Sector planning based on complexity analysis[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49 (1): 140- 146
|
|
|
[9] |
姚虹翔, 叶博嘉, 程予 基于加权Voronoi图的管制扇区增开研究[J]. 航空计算技术, 2021, 51 (4): 45- 49 YAO Hongxiang, YE Bojia, CHENG Yu Research on the method of regulatory sector expansion based on weighted Voronoi diagram[J]. Aeronautical Computing Technique, 2021, 51 (4): 45- 49
|
|
|
[10] |
叶志坚, 王建忠, 张召悦, 等 图切割快速生成扇区的蚁群算法[J]. 计算机工程与应用, 2022, 58 (3): 297- 307 YE Zhijian, WANG Jianzhong, ZHANG Zhaoyue, et al Ant colony algorithm for fast sector generation based on diagram cutting[J]. Computer Engineering and Applications, 2022, 58 (3): 297- 307
|
|
|
[11] |
CHEN Y, ZHANG D Dynamic airspace configuration method based on a weighted graph model[J]. Chinese Journal of Aeronautics, 2014, 27 (4): 903- 912
doi: 10.1016/j.cja.2014.06.009
|
|
|
[12] |
CHEN Y, BI H, ZHANG D, et al Dynamic airspace sectorization via improved genetic algorithm[J]. Journal of Modern Transportation, 2014, 21 (7): 117- 124
|
|
|
[13] |
SERGEEVA M, DELAHAYE D, MANCEL C. 3D airspace sector design by genetic algorithm [C]// International Conference on Models and Technologies for Intelligent Transportation Systems . Piscataway: IEEE, 2015: 499-506.
|
|
|
[14] |
ZHANG W, HU M, YIN J, et al Multi-objective 3D airspace sectorization problem using NSGA-II with prior knowledge and external archive[J]. Aerospace, 2023, 10 (3): 216
doi: 10.3390/aerospace10030216
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|