Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 821-831    DOI: 10.3785/j.issn.1008-973X.2025.04.018
    
Collaborative multi-task assignment of heterogeneous UAVs based on hybrid strategies based multi-objective particle swarm
Yu WANG1(),Chunrong MA2,Mingyue ZHAO1
1. College of Automation, Shenyang Aerospace University, Shenyang 110136, China
2. Aerospace Shenzhou Aerial Vehicle Ltd., Tianjin 300450, China
Download: HTML     PDF(1201KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem of collaborative multi-task assignment of heterogeneous UAVs under multiple constraints, a three-objective optimization model was constructed, which considered the UAV flight distance cost, time cost, combat effectiveness and multiple constraints. A multi-objective particle swarm optimization algorithm based on hybrid strategies was proposed to solve the model. An average action efficiency index of ammunition was proposed to evaluate the task strike efficiency, and considering the possibility of deadlock during task execution, a calculation of waiting time was proposed in the process of modeling. In order to solve the problem that traditional particle swarm optimization falls into local optimality, and ensure that feasible solutions satisfying constraints are searched, a constraint-based particle dynamic optimal initialization strategy, a dominance relationship-based advantageous individual selection strategy, and a task-based small module particle update and correction strategy were proposed, respectively. The overall performance of the algorithm in terms of convergence accuracy and diversity was effectively improved by these strategies. The validity of the model and the algorithm was verified through multi-scenario simulation experiments and ablation experiments. Results show that the solution sets obtained by the proposed algorithm are more convergent, diverse and evenly distributed than the comparative algorithms, and the collaborative multi-task assignment of heterogeneous UAVs is efficiently realized by the proposed algorithm.



Key wordsheterogeneous UAVs      task assignment      multi-objective optimization      particle swarm      hybrid strategy     
Received: 21 February 2024      Published: 25 April 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(61906125, 62373261);辽宁省高校基本科研业务费项目(LJ232410143020, LJ212410143047).
Cite this article:

Yu WANG,Chunrong MA,Mingyue ZHAO. Collaborative multi-task assignment of heterogeneous UAVs based on hybrid strategies based multi-objective particle swarm. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 821-831.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.018     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/821


基于混合策略多目标粒子群的异构无人机协同多任务分配

针对多约束条件下的异构无人机协同多任务分配问题,构建综合考虑航程代价、时间代价、作战效能和多个约束的三目标优化模型,提出基于混合策略的多目标粒子群优化算法. 为了评价任务打击效率同时考虑死锁难题,在建模过程中提出弹药平均作用效能指标和等待时间计算. 为了解决传统粒子群算法易陷入局部最优的问题,确保始终搜索到满足约束的可行解,分别提出基于约束的粒子动态优选初始化策略、基于支配关系的优势个体选择策略和基于任务的小模块粒子更新及修正策略,有效提升算法在收敛精度及多样性方面的综合性能. 通过多场景下的仿真、消融实验验证模型及算法的有效性. 结果表明,相较对比算法,所提算法得到的解集更收敛、多样,分布更均匀,能够高效实现异构无人机的协同多任务分配.


关键词: 异构无人机,  任务分配,  多目标优化,  粒子群,  混合策略 
类别参数
无人机$ i $架无人机飞行总航程$ {L_i} $$ 1 \leqslant i \leqslant {N_{\text{U}}} $
$ i $架无人机被分配的任务序列$ {{{M}}_i} $
$ i $架无人机最多可携带弹药数目$ {l_i} $
$ i $架无人机最大可飞行航程$ {\text{Ma}}{{\text{x}}_i} $
$ i $架无人机执行任务$ k $增加的航程$ {{\mathrm{dis}}_{i,k}} $
$ i $架无人机的飞行速度$ {v_i} $
$ i $架无人机执行任务$ k $所需时间资源$ C_{i,k}^t $
$ i $架无人机执行任务$ k $所需弹药资源$ C_{i,k}^l $
$ i $架无人机执行任务$ k $的等待时间$ \Delta {t_{i,k}} $
目标及任务执行任务$ k $的无人机序列$ {{{U}}_k} $
$ i $架无人机对第$ j $个目标执行任务次数$ n_i^j $
$ i $架无人机对第$ j $个目标的打击能力$ {\text{Cap}}_i^j $
目标$ j $的价值$ {\text{Va}}{{\text{l}}_j} $
执行目标$ j $$ M $类型任务的时刻$ t_j^M $$ M \in \left\{ {{M_{\text{O}}},{M_{\text{A}}},{M_{\text{E}}}} \right\} $
完成任务$ k $所需时间资源$ x_k^t $
完成任务$ k $所需弹药资源$ x_k^l $
Tab.1 Parameter of task assignment model
Fig.1 Flow chart of hybrid strategies based multi-objective particle swarm optimization algorithm
Fig.2 Example of particle dynamic initialization coding
Fig.3 Flowchart of advantageous individual selection strategy
Fig.4 Example of task-based particle learning with small modules
Fig.5 Example of task-based particle variation for small modules
Fig.6 Correction results of particle based on constraints
实例无人机任务分配结果
6×3$ u_{\text{O}}^{\text{1}} $$ {T_1}\left( {{M_{\text{O}}}} \right) \to {T_1}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{2}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_2}\left( {{M_{\text{E}}}} \right) \to {T_3}\left( {{M_{\text{O}}}} \right) \to {T_3}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{A}}^{\text{1}} $$ {T_1}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^{\text{2}} $$ {T_2}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^{\text{3}} $$ {T_3}\left( {{M_{\text{A}}}} \right) $
10×6$ u_{\text{O}}^{\text{1}} $$ {T_6}\left( {{M_{\text{O}}}} \right) \to {T_1}\left( {{M_{\text{O}}}} \right) \to {T_1}\left( {{M_{\text{E}}}} \right) \to {T_6}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{2}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_4}\left( {{M_{\text{O}}}} \right) \to {T_3}\left( {{M_{\text{O}}}} \right) \to {T_4}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{4}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_5}\left( {{M_{\text{O}}}} \right) \to {T_3}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{5}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_2}\left( {{M_{\text{E}}}} \right) \to {T_5}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{A}}^{\text{1}} $$ {T_2}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^{\text{3}} $$ \begin{gathered} {T_6}\left( {{M_{\text{A}}}} \right) \to {T_1}\left( {{M_{\text{A}}}} \right) \to {T_4}\left( {{M_{\text{A}}}} \right) \to {T_3}\left( {{M_{\text{A}}}} \right) \to {T_5}\left( {{M_{\text{A}}}} \right) \end{gathered} $
15×10$ u_{\text{O}}^{\text{1}} $$ \begin{gathered} {T_2}\left( {{M_{\text{O}}}} \right) \to {T_1}\left( {{M_{\text{O}}}} \right) \to {T_6}\left( {{M_{\text{O}}}} \right) \to {T_4}\left( {{M_{\text{E}}}} \right) \to \\ {T_1}\left( {{M_{\text{E}}}} \right) \to {T_6}\left( {{M_{\text{E}}}} \right) \\ \end{gathered} $
$ u_{\text{O}}^{\text{2}} $$ \begin{gathered} {T_{10}}\left( {{M_{\text{O}}}} \right) \to {T_3}\left( {{M_{\text{O}}}} \right) \to {T_8}\left( {{M_{\text{O}}}} \right) \to {T_9}\left( {{M_{\text{O}}}} \right) \to \\ {T_5}\left( {{M_{\text{E}}}} \right) \to {T_7}\left( {{M_{\text{E}}}} \right) \to {T_9}\left( {{M_{\text{E}}}} \right) \\ \end{gathered} $
$ u_{\text{O}}^{\text{3}} $$ {T_4}\left( {{M_{\text{O}}}} \right) \to {T_6}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{4}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_7}\left( {{M_{\text{O}}}} \right) \to {T_4}\left( {{M_{\text{O}}}} \right) \to {T_2}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{5}} $$ {T_7}\left( {{M_{\text{O}}}} \right) \to {T_3}\left( {{M_{\text{E}}}} \right) \to {T_8}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{O}}^{\text{7}} $$ {T_2}\left( {{M_{\text{O}}}} \right) \to {T_5}\left( {{M_{\text{O}}}} \right) $
$ u_{\text{O}}^{\text{9}} $$ {T_{10}}\left( {{M_{\text{E}}}} \right) $
$ u_{\text{A}}^{\text{1}} $$ {T_7}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^{\text{2}} $$ {T_9}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^{\text{3}} $$ {T_3}\left( {{M_{\text{A}}}} \right) \to {T_4}\left( {{M_{\text{A}}}} \right) \to {T_{10}}\left( {{M_{\text{A}}}} \right) \to {T_6}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^5 $$ {T_5}\left( {{M_{\text{A}}}} \right) \to {T_1}\left( {{M_{\text{A}}}} \right) \to {T_{10}}\left( {{M_{\text{A}}}} \right) $
$ u_{\text{A}}^6 $$ {T_2}\left( {{M_{\text{A}}}} \right) \to {T_8}\left( {{M_{\text{A}}}} \right) $
Tab.2 Results of UAV task assignment
Fig.7 Results of UAV task assignment in instance 10×6
Fig.8 Task assignment results of deleting waiting times
Fig.9 Average fitness of different algorithms in hybrid strategy ablation experiments
Fig.10 Pareto frontiers of five particle swarm optimization algorithms in different instances
Fig.11 Average fitness of five particle swarm optimization algorithms in different instances
对比算法A/%
实例6×3实例10×6实例15×10
IMODPSO343331
PDPSO302823
KnCMPSO201718
MOINDPSO11913
Tab.3 Average fitness decrease of proposed algorithm compared to comparison algorithms in three instances
实例算法HVSP
MeanVarWorstBestMeanVarWorstBest
6×3IMODPSO1.36×1092.24×10151.26×1091.44×1098.54×102.20×1032.09×1022.28×10
PDPSO1.38×1091.38×10151.31×1091.46×1091.43×1021.05×1043.66×1021.63×10
KnCMPSO1.56×1092.11×10151.43×1091.62×1096.72×102.10×1032.37×1022.12×10
MOINDPSO1.56×1091.22×10151.49×1091.63×1095.76×102.74×1032.26×1021.59×10
HS-MOPSO1.65×1091.92×10151.54×1091.68×1094.88×103.11×1021.09×1021.88×10
10×6IMODPSO9.17×1083.28×10157.96×1081.02×1097.92×105.88×1033.61×1022.35×10
PDPSO9.54×1083.50×10158.08×1081.03×1093.13×1027.29×1041.05×1035.70×10
KnCMPSO1.23×1098.66×10151.07×1091.40×1098.11×103.18×1032.45×1022.72×10
MOINDPSO1.17×1094.62×10151.08×1091.34×1094.84×101.08×1031.68×1021.46×10
HS-MOPSO1.29×1092.36×10151.17×1091.38×1094.76×106.97×1021.10×1022.11×10
15×10IMODPSO2.23×1083.07×10151.54×1083.38×1087.23×105.15×1021.28×1024.04×10
PDPSO2.28×1081.06×10165.96×1074.39×1087.19×1022.09×1066.85×1032.10×10
KnCMPSO5.99×1087.30×10153.94×1087.23×1081.27×1023.13×1048.70×1023.72×10
MOINDPSO4.34×1082.86×10153.52×1085.58×1086.44×107.51×1021.28×1023.00×10
HS-MOPSO6.25×1085.32×10155.12×1087.66×1085.74×109.90×1021.38×1023.07×10
Tab.4 Performance comparison of different particle swarm optimization algorithms in three instances
实例tr/s
IMODPSOPDPSOKnCMPSOMOINDPSOHS-MOPSO
6×322.7023.44388.8167.501552.73
10×642.9735.30994.5647.484240.11
15×1048.5434.90959.2946.144544.65
Tab.5 Running time of different particle swarm optimization algorithms in three instances
Fig.12 Running time of different algorithms in hybrid strategy ablation experiments
[1]   PENG Q, WU H, XUE R Review of dynamic task allocation methods for UAV swarms oriented to ground targets[J]. Complex System Modeling and Simulation, 2021, 1 (3): 163- 175
doi: 10.23919/CSMS.2021.0022
[2]   MAYER M The new killer drones: understanding the strategic implications of next-generation unmanned combat aerial vehicles[J]. International Affairs, 2015, 91 (4): 765- 780
doi: 10.1111/1468-2346.12342
[3]   彭鹏菲, 龚雪, 姜俊, 等 基于改进多维粒子群的多无人机任务分配方法[J]. 兵器装备工程学报, 2023, 44 (7): 227- 236
PENG Pengfei, GONG Xue, JIANG Jun, et al An improved multi-dimensional particle swarm-based approach to multi-UAV mission assignment[J]. Journal of Ordnance Equipment Engineering, 2023, 44 (7): 227- 236
doi: 10.11809/bqzbgcxb2023.07.030
[4]   GAO S, WU J, AI J Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization algorithm[J]. Soft Computing, 2021, 25 (10): 7155- 7167
doi: 10.1007/s00500-021-05675-8
[5]   郭继峰, 郑红星, 贾涛, 等 异构无人系统协同作战关键技术综述[J]. 宇航学报, 2020, 41 (6): 686- 696
GUO Jifeng, ZHENG Hongxing, JIA Tao, et al Summary of key technologies for heterogeneous unmanned system cooperative operations[J]. Journal of Astronautics, 2020, 41 (6): 686- 696
doi: 10.3873/j.issn.1000-1328.2020.06.006
[6]   张瑞鹏, 冯彦翔, 杨宜康 多无人机协同任务分配混合粒子群算法[J]. 航空学报, 2022, 43 (12): 412- 427
ZHANG Ruipeng, FENG Yanxiang, YANG Yikang Hybrid particle swarm algorithm for multi-UAV cooperative task allocation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (12): 412- 427
[7]   王峰, 张衡, 韩孟臣, 等 基于协同进化的混合变量多目标粒子群优化算法求解无人机协同多任务分配问题[J]. 计算机学报, 2021, 44 (10): 1967- 1983
WANG Feng, ZHANG Heng, HAN Mengchen, et al Co-evolution based mixed-variable multi-objective particle swarm optimization for UAV cooperative multi-task allocation problem[J]. Chinese Journal of Computers, 2021, 44 (10): 1967- 1983
doi: 10.11897/SP.J.1016.2021.01967
[8]   TANG X, LI X, YU R, et al Digital-twin-assisted task assignment in multi-UAV systems: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2023, 10 (17): 15362- 15375
doi: 10.1109/JIOT.2023.3263574
[9]   王峰, 黄子路, 韩孟臣, 等 基于KnCMPSO算法的异构无人机协同多任务分配[J]. 自动化学报, 2023, 49 (2): 399- 414
WANG Feng, HUANG Zilu, HAN Mengchen, et al A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation[J]. Acta Automatica Sinica, 2023, 49 (2): 399- 414
[10]   王峰, 付青坡, 韩孟臣, 等 LeCMPSO算法求解异构无人机协同多任务重分配问题[J]. 控制理论与应用, 2024, 41 (6): 1009- 1017
WANG Feng, FU Qingpo, HAN Mengchen, et al Learning-guided coevolution multi-objective particle swarm optimization for heterogeneous UAV cooperative multi-task reallocation problem[J]. Control Theory and Applications, 2024, 41 (6): 1009- 1017
[11]   XIA T, HE J, ZOU X, et al. Research and application of a high-efficiency attack method based on statistical model for search and strike integrated UAV [C]// Proceedings of the 2nd International Conference on Education, Knowledge and Information Management . Xiamen: IEEE, 2021: 636–639.
[12]   YE F, CHEN J, TIAN Y, et al Cooperative task assignment of a heterogeneous multi-UAV system using an adaptive genetic algorithm[J]. Electronics, 2020, 9 (4): 687
doi: 10.3390/electronics9040687
[13]   LEMAIRE T, ALAMI R, LACROIX S. A distributed tasks allocation scheme in multi-UAV context [C]// Proceedings of the IEEE International Conference on Robotics and Automation . New Orleans: IEEE, 2004: 3622–3627.
[14]   CHEN Y, YANG D, YU J Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (6): 2853- 2872
doi: 10.1109/TAES.2018.2831138
[15]   LIAO T, SOCHA K, MONTES DE OCA M A, et al Ant colony optimization for mixed-variable optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 503- 518
doi: 10.1109/TEVC.2013.2281531
[16]   MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
[17]   MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163- 191
doi: 10.1016/j.advengsoft.2017.07.002
[18]   王丹丹, 汤健, 夏恒, 等 基于多目标PSO混合优化的虚拟样本生成[J]. 自动化学报, 2024, 50 (4): 790- 811
WANG Dandan, TANG Jian, XIA Heng, et al Virtual sample generation method based on hybrid optimization with multi-objective PSO[J]. Acta Automatica Sinica, 2024, 50 (4): 790- 811
[19]   HAN H, BAI X, HAN H, et al Self-adjusting multitask particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26 (1): 145- 158
doi: 10.1109/TEVC.2021.3098523
[20]   LI Y, DAI J. Research on UAV task assignment based on hybrid particle swarm algorithm [C]// Proceedings of the 4th International Conference on Intelligent Autonomous Systems . Wuhan: IEEE, 2021: 361–365.
[21]   WEI C, JI Z, CAI B Particle swarm optimization for cooperative multi-robot task allocation: a multi-objective approach[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 2530- 2537
doi: 10.1109/LRA.2020.2972894
[22]   王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报: 工学版, 2022, 56 (3): 531- 541
WANG Wanliang, JIN Yawen, CHEN Jiacheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
[23]   喻明让, 陈云, 张志刚 离散粒子群优化算法求解多目标柔性作业车间调度问题[J]. 制造技术与机床, 2019, (1): 159- 165
YU Mingrang, CHEN Yun, ZHANG Zhigang Adiscrete version of particle swarm optimization for multi-objective flexible job-shop scheduling problems[J]. Manufacturing Technology and Machine Tool, 2019, (1): 159- 165
[24]   于洋, 谭学治, 殷聪, 等 基于二进制混沌粒子群算法的认知决策引擎[J]. 哈尔滨工业大学学报, 2014, 46 (3): 8- 13
YU Yang, TAN Xuezhi, YIN Cong, et al Cognitive decision engine based on binary chaotic particle swarm optimization[J]. Journal of Harbin Institute of Technology, 2014, 46 (3): 8- 13
doi: 10.11918/hitxb20140302
[25]   TONG L, DU B, LIU R, et al An improved multiobjective discrete particle swarm optimization for hyperspectral endmember extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (10): 7872- 7882
doi: 10.1109/TGRS.2019.2917001
[1] Yingfei ZHANG,Xiaobing HU,Hang ZHOU,Xuzeng FENG. Three-dimensional sector automatic design based on improved NSGA-II algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 413-422.
[2] Yong LI,Yue WANG,Fuqiang LIU,Baiqing SUN,Kairu LI. Multi-task allocation framework in context of caregiver-robot collaborative elderly care[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 375-383.
[3] Tingfang YU,Genli ZHANG,Jiapeng ZHOU,Yicun TANG. Performance analysis and optimization of supercritical CO2 Brayton cycle coupled with organic flash cycle[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 130-140.
[4] Ruoqiong LI,Yuan WENG,Xin LI. Parameter optimization of fractional-order magnetically-coupled resonant bidirectional wireless power transfer system[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 141-151.
[5] Qianlin YE,Wanliang WANG,Zheng WANG. Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1107-1120.
[6] Maochen MEN,Rui ZHAO,Jinshuai ZHANG,Peng WANG,Qing ZHANG. Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1255-1265.
[7] Juncheng WANG,Fahui WANG. Variable weight PSO-Elman neural network based roadadhesion coefficient estimation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 622-634.
[8] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[9] Xue-yang TANG,Xiao-pei CAI,Wei-hua WANG,Wen-hao CHANG,Qi-hao WANG. Rail corrugation recognition based on particle probabilistic neural network algorithm[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1766-1774.
[10] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[11] Tong-li CHANG,Wan-bin FU. Human-robot matching design of self-aligning artificial knee joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 753-759.
[12] Ting-fang YU,Ling SONG. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 404-414.
[13] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[14] Zhi-tong TAO,Jian-feng TAO,Cheng-jin QIN,Cheng-liang LIU. Trajectory planning of TBM disc cutter changing robot based on time-jerk optimization[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 1-9.
[15] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.