1. Zhengzhou University Comprehensive Design and Research Institute Co. Ltd, Zhengzhou 450001, China 2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China 3. Institute of Electric Power Science, State Grid Henan Electric Power Company, Zhengzhou 450052, China
Large-scale distributed photovoltaic grid-connection has brought serious power back-feeding to the medium-voltage distribution network, resulting in node voltage limit violations and reverse overload of distribution transformers in the medium-voltage distribution network. An evaluation model for distributed photovoltaic hosting capacity in medium-voltage distribution networks was established, and an improved simulated annealing-particle swarm optimization (SA-PSO) algorithm was proposed. The system power flow balance, node voltage deviation, reverse load rate of distribution transformers, and line current carrying capacity were taken as constraints, and the distributed photovoltaic equivalent grid-connection capacity was taken as the objective function, which was the difference between the distributed photovoltaic grid-connection capacity and the system network loss. The distributed photovoltaic hosting capacity calculation was performed on the IEEE33 system and an actual medium-voltage distribution network. Results showed that the established distributed photovoltaic hosting capacity evaluation model was suitable for evaluating the stability of node voltage and safe operation of distribution transformers in medium-voltage distribution networks. Compared with other algorithms, the improved SA-PSO algorithm improved the convergence speed and optimization ability of the evaluation model calculation. Under the same constraints, the obtained line distributed photovoltaic hosting capacity was higher and the system network loss was lower, compared with those of other algorithms.
Maochen MEN,Rui ZHAO,Jinshuai ZHANG,Peng WANG,Qing ZHANG. Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1255-1265.
Tab.8Restriction factors of PV capacity increasing on each node
[1]
BOUGUERRA S, YAICHE M R, GASSAB O, et al The impact of PV panel positioning and degradation on the pv inverter lifetime and reliability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (3): 3114- 3126
doi: 10.1109/JESTPE.2020.3006267
[2]
任冲, 柯贤波, 王吉利, 等 高比例新能源电网新能源功率优化分配方法[J]. 电力工程技术, 2022, 41 (3): 110- 117 REN Chong, KE Xianbo, WANG Jili, et al New energy power optimal distribution method for high proportion new energy power grid[J]. Electric Power Engineering Technology, 2022, 41 (3): 110- 117
doi: 10.12158/j.2096-3203.2022.03.013
[3]
仲泽天, 李梦月, 王加澍, 等 一种有源配电网分布式光伏消纳能力评估方法[J]. 电网与清洁能源, 2023, 39 (2): 60- 68 ZHONG Zetian, LI Mengyue, WANG Jiashu, et al An assessment method for distributed photovoltaic absorption capacity of active distribution networks[J]. Power System and Clean Energy, 2023, 39 (2): 60- 68
doi: 10.3969/j.issn.1674-3814.2023.02.009
[4]
JAIN A K, HOROWITZ K, DING F, et al Dynamic hosting capacity analysis for distributed photovoltaic resources: framework and case study[J]. Applied Energy, 2020, 280: 115633
doi: 10.1016/j.apenergy.2020.115633
[5]
梁海平, 王翠, 王正平, 等 基于改进FPA算法的配电网光伏消纳能力评估[J]. 可再生能源, 2019, 37 (2): 190- 198 LIANG Haiping, WANG Cui, WANG Zhengping, et al Evaluation of distributed photovoltaic integration capacity based on improved FPA algorithm[J]. Renewable Energy Resources, 2019, 37 (2): 190- 198
doi: 10.3969/j.issn.1671-5292.2019.02.006
[6]
谭笑, 王主丁, 李强, 等 计及多约束的多分布式电源接入配电网最大承载力分段算法[J]. 电力系统自动化, 2020, 44 (4): 72- 80 TAN Xiao, WANG Zhuding, LI Qiang, et al Segmentation algorithm for maximum hosting capacity of distributed generator accessing to distribution network considering multiple constraints[J]. Automation of Electric Power Systems, 2020, 44 (4): 72- 80
[7]
KOIRALA A, VAN ACKER T, D’HULST R, et al Hosting capacity of photovoltaic systems in low voltage distribution systems: a benchmark of deterministic and stochastic approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111899
doi: 10.1016/j.rser.2021.111899
[8]
HAN C, LEE D, SONG S, et al Probabilistic assessment of PV hosting capacity under coordinated voltage regulation in unbalanced active distribution networks[J]. IEEE Access, 2022, 10: 35578- 35588
doi: 10.1109/ACCESS.2022.3163595
[9]
董昱, 董存, 于若英, 等 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8 DONG Yu, DONG Cun, YU Ruoying, et al Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8
[10]
刘科研, 盛万兴, 马晓晨, 等 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42 (6): 146- 155 LIU Keyan, SHENG Wanxing, MA Xiaochen, et al Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (6): 146- 155
[11]
陈德炜, 施永明, 徐威, 等 基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法[J]. 电力系统保护与控制, 2022, 50 (7): 120- 125 CHEN Dewei, SHI Yongming, XU Wei, et al Multi-objective optimization method for location and capacity of a distribution network with distributed photovoltaic energy based on an improved FPA algorithm[J]. Power System Protection and Control, 2022, 50 (7): 120- 125
[12]
张嘉澍, 吕泉, 郭雪丽, 等 考虑合理弃光的配电网光伏最大接入容量研究[J]. 太阳能学报, 2023, 44 (2): 418- 426 ZHANG Jiashu, LYU Quan, GUO Xueli, et al Research on maximum PV access capacity in distribution network considering proper power curtailment[J]. ACTA Energiae Solaris Sinica, 2023, 44 (2): 418- 426
[13]
张长庚 考虑含光伏接入的配电网故障特性研究[J]. 电网与清洁能源, 2022, 38 (12): 138- 146 ZHANG Changgeng Research on fault characteristics of the distribution network considering access of photovoltaic[J]. Power System and Clean Energy, 2022, 38 (12): 138- 146
doi: 10.3969/j.issn.1674-3814.2022.12.018
[14]
李建军, 杜松怀, 杨德昌 集中光伏电源接入对低压配电网电压的影响[J]. 智慧电力, 2020, 48 (4): 21- 27 LI Jianjun, DU Songhuai, YANG Dechang Influence of concentrated photovoltaic power supply access on voltage of low voltage distribution network[J]. Smart Power, 2020, 48 (4): 21- 27
SINGH P, PRADHAN A K A local measurement based protection technique for distribution system with photovoltaic plants[J]. IET Re-newable Power Generation, 2020, 14 (6): 996- 1003
doi: 10.1049/iet-rpg.2019.0996
[17]
邓景松, 王英民, 孙迪飞, 等 基于配电网电流保护约束的分布式光伏电源容量分析[J]. 电工技术学报, 2019, 34 (Suppl.2): 629- 636 DENG Jingsong, WANG Yingmin, SUN Difei, et al Capacity analysis of distributed photovoltaic generation based on current protection in distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34 (Suppl.2): 629- 636
[18]
梁志峰, 夏俊荣, 孙檬檬, 等 数据驱动的配电网分布式光伏承载力评估技术研究[J]. 电网技术, 2020, 44 (7): 2430- 2439 LIANG Zhifeng, XIA Junrong, SUN Mengmeng, et al Data driven assessment of distributed photovoltaic hosting capacity in distribution network[J]. Power System Technology, 2020, 44 (7): 2430- 2439
[19]
邹宏亮, 韩翔宇, 廖清芬, 等 考虑电压质量与短路容量约束的分布式电源准入容量分析[J]. 电网技术, 2016, 40 (8): 2273- 2280 ZOU Hongliang, HAN Xiangyu, LIAO Qingfen, et al Penetration capacity calculation for distributed generation considering voltage quality and short circuit capacity constraints[J]. Power System Technology, 2016, 40 (8): 2273- 2280
王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报:工学版, 2022, 56 (3): 531- 541 WANG Wanliang, JIN Yawen, CHEN Jiacheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
[23]
ZHANG H, NI S Q. Train scheduling optimization for an urban rail transit line: a simulated-annealing algorithm using a large neighborhood search metaheuristic [EB/OL]. [2023-05-01]. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000903625000001.
[24]
LUO Z M, MA J L, JIANG Z Q Research on power system dispatching operation under high proportion of wind power consumption[J]. Energies, 2022, 15 (18): 6819
doi: 10.3390/en15186819
[25]
丁明, 方慧, 毕锐, 等 基于集群划分的配电网分布式光伏与储能选址定容规划[J]. 中国电机工程学报, 2019, 39 (8): 2187- 2201 DING Ming, FANG Hui, BI Rui, et al Optimal siting and sizing of distributed PV-storage in distribution network based on cluster partition[J]. Proceedings of the CSEE, 2019, 39 (8): 2187- 2201