Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1255-1265    DOI: 10.3785/j.issn.1008-973X.2024.06.015
    
Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization
Maochen MEN1(),Rui ZHAO2,Jinshuai ZHANG3,Peng WANG3,Qing ZHANG2
1. Zhengzhou University Comprehensive Design and Research Institute Co. Ltd, Zhengzhou 450001, China
2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
3. Institute of Electric Power Science, State Grid Henan Electric Power Company, Zhengzhou 450052, China
Download: HTML     PDF(1285KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Large-scale distributed photovoltaic grid-connection has brought serious power back-feeding to the medium-voltage distribution network, resulting in node voltage limit violations and reverse overload of distribution transformers in the medium-voltage distribution network. An evaluation model for distributed photovoltaic hosting capacity in medium-voltage distribution networks was established, and an improved simulated annealing-particle swarm optimization (SA-PSO) algorithm was proposed. The system power flow balance, node voltage deviation, reverse load rate of distribution transformers, and line current carrying capacity were taken as constraints, and the distributed photovoltaic equivalent grid-connection capacity was taken as the objective function, which was the difference between the distributed photovoltaic grid-connection capacity and the system network loss. The distributed photovoltaic hosting capacity calculation was performed on the IEEE33 system and an actual medium-voltage distribution network. Results showed that the established distributed photovoltaic hosting capacity evaluation model was suitable for evaluating the stability of node voltage and safe operation of distribution transformers in medium-voltage distribution networks. Compared with other algorithms, the improved SA-PSO algorithm improved the convergence speed and optimization ability of the evaluation model calculation. Under the same constraints, the obtained line distributed photovoltaic hosting capacity was higher and the system network loss was lower, compared with those of other algorithms.



Key wordsdistributed photovoltaic      medium voltage distribution network      voltage violation      reverse overload      hosting capacity      improved simulated annealing-particle swarm optimization algorithm     
Received: 29 July 2023      Published: 25 May 2024
CLC:  TK 51  
  TM 715  
Fund:  国家电网公司总部科技资助项目(5400-202224153A-1-1-ZN).
Cite this article:

Maochen MEN,Rui ZHAO,Jinshuai ZHANG,Peng WANG,Qing ZHANG. Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1255-1265.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.015     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1255


基于改进模拟退火-粒子群的配电网分布式光伏承载力评估

大规模分布式光伏并网给中压配电网带来严重功率反送,导致中压配电网出现节点电压越限和配电变压器反向过载问题. 以系统潮流平衡、节点电压偏差、配电变压器反向负载率和线路载流量为约束条件,以分布式光伏并网容量与系统网络损耗之差的分布式光伏等效并网容量为目标函数,建立中压配电网分布式光伏承载力评估模型,并提出改进模拟退火-粒子群(SA-PSO)算法. 对IEEE33系统和实际中压配电网进行分布式光伏承载力计算,结果表明,所建立的分布式光伏承载力评估模型适用于中压配电网节点电压稳定性与配电变压器安全运行问题评估;相较于其他算法,改进SA-PSO算法提高了评估模型计算的收敛速度与寻优能力,在相同约束条件限值下,所得线路分布式光伏承载力更高,且系统网络损耗更低.


关键词: 分布式光伏,  中压配电网,  电压越限,  反向过载,  承载力,  改进模拟退火-粒子群算法 
Fig.1 Medium voltage distribution network model with distributed photovoltaic
Fig.2 IEEE33 system configuration
Fig.3 Impact of grid connection of distributed photovoltaics on voltage
评估等级$\lambda $电网状态
绿色$\lambda \leqslant 0$负荷满足分布式电源就地消纳
黄色$0 < \lambda \leqslant 80{\text{%}} $负荷水平无法满足就地消纳,新增分布式电源发电在满足电网安全稳定约束前提下向上级电网反送
红色$\lambda > 80{\text{%}} $所在变电站区域内用电负荷已无法满足分布式电源就地就近消纳需求,电网运行安全存在风险
Tab.1 Evaluation level of reverse load rate
Fig.4 Impact of grid connection of distributed photovoltaics on network loss
分布式电源类型短路电流注入能力
逆变电源100%~400%,持续时间取决于控制装置
同步发电机500%~1000%,几个周波后衰减到200%~400%
感应发电机500%~1000%,10个周波衰减至可忽略
Tab.2 Short-circuit current injection capacity of different types distributed generator
PPV/MW短路点位置Ik/kAIk.PV/kAαk/%
262.4030.0371.52
141.5020.0412.73
281.3210.0151.14
562.4530.0873.64
141.5550.0946.03
281.3390.0332.53
Tab.3 Calculation results of short-circuit current
Fig.5 Flow chart of improved SA-PSO algorithm
Fig.6 Hosting capacity of distributed photovoltaics with single node
并网类型PPV/kWPloss/kWρ/%
分散型并网2 088.1282.5756
紧凑型并网1 286.8161.0334
Tab.4 Hosting capacity of distributed photovoltaics with multiple nodes
Fig.7 Hosting capacity of distributed photovoltaics with multi nodes
算法PPV/kWPloss/kWρ/%收敛次数
PSO
GA8 434.31165.30227500
APSO8 588.14176.40231500
改进SA-PSO8 653.09159.8723340
Tab.5 Comparison of algorithm results in IEEE33 system
Fig.8 Hosting capacity of distributed photovoltaic in IEEE33 system
Fig.9 Diagram of 10 kV distribution line in certain city
Fig.10 Changes in photovoltaic output and load
节点i节点jZSj/(kV·A)Pload.j/(kV·A)
010.149+j0.047 110021.95+j4.457
120.203+j0.064 120034.60+j10.092
230.278+j0.087 931536.30+j15.464
340.058+j0.018 410016.80+j2.394
450.240+j0.076 05031.64+j6.425
560.448+j0.081 010038.40+j15.177
670.462+j0.083 410025.65+j10.138
780.243+j0.043 810013.85+j4.552
290.202+j0.036 41605.50+j1.996
9100.244+j0.044 010016.60+j4.160
9110.233+j0.042 210031.85+j23.888
3120.174+j0.031 410034.70+j15.810
5130.145+j0.026 220016.55+j2.358
13140.363+j0.065 510018.55+j2.494
13150.230+j0.041 610012.80+j6.199
7160.237+j0.042 920037.95+j5.408
16170.284+j0.051 210010.70+j5.182
17180.201+j0.036 32008.75+j2.876
18190.102+j0.018 51004.70+j0.670
19200.128+j0.023 210013.50+j3.938
18210.171+j0.030 910011.75+j3.427
Tab.6 Parameters of distribution line
算法PPV/kWPloss/kWρ/%收敛次数
PSO
GA2 169.3723.34501600
APSO2 206.1224.15509500
改进SA-PSO2 283.0422.0652750
Tab.7 Comparison of algorithm results in actual network
Fig.11 Hosting capacity of distributed photovoltaic in actual network
线路光伏并网点主要限制因素
IEEE 331、2、5、6、7、8、9、18、20、22、25、26反向负载率越限
10、11、12、13、14、15、16、17、
20、21、24、27、28、29、30、31、32
节点电压越限
3、4、19、23支路载流量越限
实际线路1、2、3、4、5、9、11、12、13反向负载率越限
6、7、8、14、15、16、17、18、19、20、21节点电压越限
Tab.8 Restriction factors of PV capacity increasing on each node
[1]   BOUGUERRA S, YAICHE M R, GASSAB O, et al The impact of PV panel positioning and degradation on the pv inverter lifetime and reliability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (3): 3114- 3126
doi: 10.1109/JESTPE.2020.3006267
[2]   任冲, 柯贤波, 王吉利, 等 高比例新能源电网新能源功率优化分配方法[J]. 电力工程技术, 2022, 41 (3): 110- 117
REN Chong, KE Xianbo, WANG Jili, et al New energy power optimal distribution method for high proportion new energy power grid[J]. Electric Power Engineering Technology, 2022, 41 (3): 110- 117
doi: 10.12158/j.2096-3203.2022.03.013
[3]   仲泽天, 李梦月, 王加澍, 等 一种有源配电网分布式光伏消纳能力评估方法[J]. 电网与清洁能源, 2023, 39 (2): 60- 68
ZHONG Zetian, LI Mengyue, WANG Jiashu, et al An assessment method for distributed photovoltaic absorption capacity of active distribution networks[J]. Power System and Clean Energy, 2023, 39 (2): 60- 68
doi: 10.3969/j.issn.1674-3814.2023.02.009
[4]   JAIN A K, HOROWITZ K, DING F, et al Dynamic hosting capacity analysis for distributed photovoltaic resources: framework and case study[J]. Applied Energy, 2020, 280: 115633
doi: 10.1016/j.apenergy.2020.115633
[5]   梁海平, 王翠, 王正平, 等 基于改进FPA算法的配电网光伏消纳能力评估[J]. 可再生能源, 2019, 37 (2): 190- 198
LIANG Haiping, WANG Cui, WANG Zhengping, et al Evaluation of distributed photovoltaic integration capacity based on improved FPA algorithm[J]. Renewable Energy Resources, 2019, 37 (2): 190- 198
doi: 10.3969/j.issn.1671-5292.2019.02.006
[6]   谭笑, 王主丁, 李强, 等 计及多约束的多分布式电源接入配电网最大承载力分段算法[J]. 电力系统自动化, 2020, 44 (4): 72- 80
TAN Xiao, WANG Zhuding, LI Qiang, et al Segmentation algorithm for maximum hosting capacity of distributed generator accessing to distribution network considering multiple constraints[J]. Automation of Electric Power Systems, 2020, 44 (4): 72- 80
[7]   KOIRALA A, VAN ACKER T, D’HULST R, et al Hosting capacity of photovoltaic systems in low voltage distribution systems: a benchmark of deterministic and stochastic approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111899
doi: 10.1016/j.rser.2021.111899
[8]   HAN C, LEE D, SONG S, et al Probabilistic assessment of PV hosting capacity under coordinated voltage regulation in unbalanced active distribution networks[J]. IEEE Access, 2022, 10: 35578- 35588
doi: 10.1109/ACCESS.2022.3163595
[9]   董昱, 董存, 于若英, 等 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8
DONG Yu, DONG Cun, YU Ruoying, et al Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8
[10]   刘科研, 盛万兴, 马晓晨, 等 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42 (6): 146- 155
LIU Keyan, SHENG Wanxing, MA Xiaochen, et al Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (6): 146- 155
[11]   陈德炜, 施永明, 徐威, 等 基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法[J]. 电力系统保护与控制, 2022, 50 (7): 120- 125
CHEN Dewei, SHI Yongming, XU Wei, et al Multi-objective optimization method for location and capacity of a distribution network with distributed photovoltaic energy based on an improved FPA algorithm[J]. Power System Protection and Control, 2022, 50 (7): 120- 125
[12]   张嘉澍, 吕泉, 郭雪丽, 等 考虑合理弃光的配电网光伏最大接入容量研究[J]. 太阳能学报, 2023, 44 (2): 418- 426
ZHANG Jiashu, LYU Quan, GUO Xueli, et al Research on maximum PV access capacity in distribution network considering proper power curtailment[J]. ACTA Energiae Solaris Sinica, 2023, 44 (2): 418- 426
[13]   张长庚 考虑含光伏接入的配电网故障特性研究[J]. 电网与清洁能源, 2022, 38 (12): 138- 146
ZHANG Changgeng Research on fault characteristics of the distribution network considering access of photovoltaic[J]. Power System and Clean Energy, 2022, 38 (12): 138- 146
doi: 10.3969/j.issn.1674-3814.2022.12.018
[14]   李建军, 杜松怀, 杨德昌 集中光伏电源接入对低压配电网电压的影响[J]. 智慧电力, 2020, 48 (4): 21- 27
LI Jianjun, DU Songhuai, YANG Dechang Influence of concentrated photovoltaic power supply access on voltage of low voltage distribution network[J]. Smart Power, 2020, 48 (4): 21- 27
[15]   国家能源局. 分布式电源接入电网承载力评估导则: DL/T2041—2019 [S]. 北京: 中国标准出版社, 2019.
[16]   SINGH P, PRADHAN A K A local measurement based protection technique for distribution system with photovoltaic plants[J]. IET Re-newable Power Generation, 2020, 14 (6): 996- 1003
doi: 10.1049/iet-rpg.2019.0996
[17]   邓景松, 王英民, 孙迪飞, 等 基于配电网电流保护约束的分布式光伏电源容量分析[J]. 电工技术学报, 2019, 34 (Suppl.2): 629- 636
DENG Jingsong, WANG Yingmin, SUN Difei, et al Capacity analysis of distributed photovoltaic generation based on current protection in distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34 (Suppl.2): 629- 636
[18]   梁志峰, 夏俊荣, 孙檬檬, 等 数据驱动的配电网分布式光伏承载力评估技术研究[J]. 电网技术, 2020, 44 (7): 2430- 2439
LIANG Zhifeng, XIA Junrong, SUN Mengmeng, et al Data driven assessment of distributed photovoltaic hosting capacity in distribution network[J]. Power System Technology, 2020, 44 (7): 2430- 2439
[19]   邹宏亮, 韩翔宇, 廖清芬, 等 考虑电压质量与短路容量约束的分布式电源准入容量分析[J]. 电网技术, 2016, 40 (8): 2273- 2280
ZOU Hongliang, HAN Xiangyu, LIAO Qingfen, et al Penetration capacity calculation for distributed generation considering voltage quality and short circuit capacity constraints[J]. Power System Technology, 2016, 40 (8): 2273- 2280
[20]   中国国家标准化管理委员会. 电能质量 供电电压偏差: GB/T 12325—2008 [S]. 北京: 中国标准出版社, 2008.
[21]   国家电网公司. 配电网技术导则: Q-GDW10370—2016 [S]. 北京: 中国标准出版社, 2016.
[22]   王万良, 金雅文, 陈嘉诚, 等 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报:工学版, 2022, 56 (3): 531- 541
WANG Wanliang, JIN Yawen, CHEN Jiacheng, et al Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 531- 541
[23]   ZHANG H, NI S Q. Train scheduling optimization for an urban rail transit line: a simulated-annealing algorithm using a large neighborhood search metaheuristic [EB/OL]. [2023-05-01]. https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000903625000001.
[24]   LUO Z M, MA J L, JIANG Z Q Research on power system dispatching operation under high proportion of wind power consumption[J]. Energies, 2022, 15 (18): 6819
doi: 10.3390/en15186819
[25]   丁明, 方慧, 毕锐, 等 基于集群划分的配电网分布式光伏与储能选址定容规划[J]. 中国电机工程学报, 2019, 39 (8): 2187- 2201
DING Ming, FANG Hui, BI Rui, et al Optimal siting and sizing of distributed PV-storage in distribution network based on cluster partition[J]. Proceedings of the CSEE, 2019, 39 (8): 2187- 2201
[1] Xiao-yi YU,Da-qian RAO,Chang-xing HU,Mei-juan XU. Parameter estimation of solar cell engineering model and model application[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 63-70.
[2] Li-qun MA,Yu-long ZHAO,Yun-tong ZHAO,Shi-xue WANG. Experimental study of ventilated building integrated photovoltaic/ thermal system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2168-2174.
[3] HU Jian-hui, CHEN Wu-jun, ZHAO Bing, SONG Hao.
Experimental studies on system performance of PV-ETFE cushion system in winter
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1816-1821.
[4] ZHANG Yan-mei, XIAO Gang, LUO Zhong-yang, YANG Tian-feng, GUO Kai-kai, NI Ming-jiang. Optical analysis and comparison of two-stage solar dish system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1260-1264.
[5] WU Gai, CHENG Jun, ZHANG Meng, ZHOU Jun-hu, CEN Ke-fa. Research progress of CO2 photoelectrocatalysis[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 680-686.
[6] CHEN Huan, WANG Hong-mei, YU Zi-tao, HU Ya-cai, ZHANG Liang, NI Yu, FAN Jian-ren. Experimental investigation of a natural circulation parabolic trough
collector system for medium-high temperature steam generation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1666-1670.
[7] ZHANG Guo-yue, QU Yi-long, QI Dong-lian, LI Ran. Three-level photovoltaic inverter technology based on repetitive control[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1339-1344.
[8] KONG Xiang-qiang, ZHANG Dong, LI Ying, YANG Qian-ming. Simulation of thermal performance on unglazed solar
collector for refrigerant
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 217-221.