Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2168-2174    DOI: 10.3785/j.issn.1008-973X.2022.11.007
    
Experimental study of ventilated building integrated photovoltaic/ thermal system
Li-qun MA1(),Yu-long ZHAO2,Yun-tong ZHAO3,Shi-xue WANG2,*()
1. China Energy Investment Group Co., Beijing 100039, China
2. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
3. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
Download: HTML     PDF(2082KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking copper indium gallium selenium photovoltaic modules as photovoltaic cells, a comparative experimental group was established to investigating the effects of ventilation flow rate and climate conditions on the thermal and photoelectric performance of the ventilated building integrated photovoltaic/ thermal system. The results showed that the thermal power and power generation of the system were positively correlated with the irradiation intensity, but the variation was not completely inconsistent due to the influence of ambient temperature. When the ventilation flow rate was 2.2 m/s, the comprehensive utilization rate of solar energy reached 65.4%. The average thermal efficiency and the relative power generation were proposed to characterize the system performance, and a quantitative relationship with the ventilation flow rate was obtained. When the ventilation flow rate increased from 0.4 m/s to 2.2 m/s, the average thermal efficiency of the system increased by 130.0% and the power generation efficiency only increased by about 4.0%. Considering the resistance and energy consumption, the ventilation flow rate was critical to the efficient operation of the system. The generalizability of the quantitative relationship was verified through repeated experiments in different regions.



Key wordscopper indium gallium selenide      building integrated photovoltaic/thermal      ventilation flow      thermal efficiency      power generation efficiency     
Received: 10 December 2021      Published: 02 December 2022
CLC:  TK 513.5  
Fund:  国家自然科学基金资助项目 (51876136)
Corresponding Authors: Shi-xue WANG     E-mail: liqun.ma@chnenergy.com.cn;wangshixue_64@tju.edu.cn
Cite this article:

Li-qun MA,Yu-long ZHAO,Yun-tong ZHAO,Shi-xue WANG. Experimental study of ventilated building integrated photovoltaic/ thermal system. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2168-2174.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.007     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2168


通风型光伏/光热建筑一体化系统的实验研究

以铜铟镓硒光伏组件为光电单元,通过构建对比实验组研究通风流速和气候条件对通风型光伏/光热建筑一体化系统的光热和光电性能的影响. 结果表明,系统得热功率和发电功率均与辐照强度呈正相关,受环境温度影响,变化规律并非完全一致. 当通风流速为2.2 m/s时,太阳能综合利用率达到65.4%,提出平均得热效率和相对发电量用于表征系统的光热及光电性能,获得与通风流速的定量关系;当通风流速由0.4 m/s增大到2.2 m/s时,系统平均得热效率提高了130.0%,发电效率仅增加4.0%左右. 在考虑阻力耗能的情况下,通风流速是系统高效运行的关键,通过不同地域的重复实验,验证了定量关系的普适性.


关键词: 铜铟镓硒,  光伏/光热建筑一体化,  通风流速,  得热效率,  发电效率 
Fig.1 BIPV/T experimental system based on copper indium gallium selenide photovoltaic modules
参数 数值
额定功率/W 100.00
额定电压/V 75.00
额定电流/Ω 1.33
开路电压/V 94.10
额定功率温度系数(%/℃) -0.36
Tab.1 CIGS PV module parameters
Fig.2 Climatic conditions during the experiment in Huizhou
Fig.3 Typical daily climate parameters (December 10, 2017)
Fig.4 All-day thermal and electrical performance (flow velocity 2.2 m/s)
Fig.5 Influence of light conditions on temperature of backplane (flow velocity 2.2 m/s)
Fig.6 Changes in the relative temperature rise of the backplane (based on flow velocity 2.2 m/s)
Fig.7 Influence of light conditions on thermal performance of system     
Fig.8 Influence of flow velocity on thermal efficiency
Fig.9 Influence of flow velocity on relative power generation
Fig.10 Influence of flow velocity on resistance power consumption
Fig.11 Climatic conditions during experiment in Beijing
Fig.12 Comparison of thermal and electrical performance between Beijing and Huizhou
[1]   MAGHRABIE H M, ELSAID K, SAYED E T, et al Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101151
doi: 10.1016/j.seta.2021.101151
[2]   WANG P C, LIU Z B, ZHANG L Sustainability of compact cities: a review of inter-building effect on building energy and solar energy use[J]. Sustainable Cities and Society, 2021, 72: 1- 18
[3]   ROUNIS E D, ATHIENITIS A, STATHOPOULOS T Review of air-based PV/T and BIPV/T systems- performance and modeling[J]. Renewable Energy, 2021, 163: 1729- 1753
doi: 10.1016/j.renene.2020.10.085
[4]   YADAV S, PANDA S K Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel[J]. Renewable Energy, 2020, 150: 136- 146
[5]   李莉莉, 白羽, 邓立生, 等 太阳能光热与光电/光热系统在中国不同建筑气候带下的性能研究[J]. 可再生能源, 2021, 39 (4): 464- 471
LI Li-li, BAI Yu, DENG Li-sheng, et al Study on the performance of solar photothermal and photovoltaic/ photothermal systems in different building climates in China[J]. Renewable Energy Resources, 2021, 39 (4): 464- 471
doi: 10.3969/j.issn.1671-5292.2021.04.006
[6]   ALIBAKHSH K, YASAMIN K, SOUDABEH G, et al Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study[J]. Experimental Thermal and Fluid Science, 2017, 85: 13- 21
doi: 10.1016/j.expthermflusci.2017.02.012
[7]   庞玮, 于洪文, 张林睿, 等 环境条件和冷却水流量对光伏光热系统的性能影响[J]. 可再生能源, 2018, 36 (4): 501- 505
PANG Wei, YU Hong-wen, ZHANG lin-rui, et al Effects of environmental conditions and cooling water flow rate on the performance of photovoltaic photothermal system[J]. Renewable Energy Resources, 2018, 36 (4): 501- 505
doi: 10.3969/j.issn.1671-5292.2018.04.005
[8]   MASOUD A, AMIN S, POUYAN T S, et al Energy and exergy analysis of two novel hybrid solar photovoltaic geothermal energy systems incorporating a building integrated photovoltaic thermal system and an earth air heat exchanger system[J]. Solar Energy, 2019, 188: 83- 95
doi: 10.1016/j.solener.2019.05.080
[9]   胡建辉, 陈务军, 赵兵, 等 PV-ETFE气枕系统冬季性能试验研究[J]. 浙江大学学报:工学版, 2014, 48 (10): 1816- 1821
HU Jian-hui, CHEN Wu-Jun, ZHAO Bing, et al Experimental studies on system performance of PV-ETFE cushion system in winter[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (10): 1816- 1821
[10]   ABDULLAH S, SALMANZADEH M, AMERI M, et al Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels[J]. Energy and Buildings, 2011, 43 (9): 2219- 2226
[11]   YANG T T, ANDREAS K, ATHIENITIS A K A study of design options for a building integrated photovoltaic/ thermal (BIPV/T) system with glazed air collector and multiple inlets[J]. Solar Energy, 2014, 104: 82- 92
doi: 10.1016/j.solener.2014.01.049
[12]   BAMBROOK S M, SPROUL A B Maximising the energy output of a PVT air system[J]. Solar Energy, 2012, 86 (6): 1857- 1871
doi: 10.1016/j.solener.2012.02.038
[1] LI Ming, FENG Ye, TANG Ke, JIN Tao. Influence of Gedeon streaming on performance of four-stage travelling-wave thermoacoustic engine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1633-1639.
[2] XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa.
Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 3-.
[3] XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa.
Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1721-1726.
[4] YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 869-877.