Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1585-1596    DOI: 10.3785/j.issn.1008-973X.2023.08.011
    
Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete
Si-zhen YU1,2(),Tian-qi QI3,Qiao WANG1,2,Yong-gang CHENG1,2,*(),Wei ZHOU1,2,Xiao-lin CHANG1,2
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
2. Institute of Water Engineering Sciences, Wuhan University, Wuhan 430072, China
3. Changjiang Institute of Survey, Planning, Design and Research Co. Ltd, Wuhan 430010, China
Download: HTML     PDF(2717KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fixed thermo-hygro-chemical-dry-wet strain (THCD) multi-field coupled model was established based on the basic theories, in order to accurately study the characteristics of strain and stress caused by humidity change for hydraulic concrete in service environment. Based on the existing model, optimized chemical affinity function and adsorption isotherm equation were introduced to realize accurate simulation of hydration process and multi-stage evolution of humidity. And the relationship between humidity and strain was established further, so that the model can describe the characteristics of strain and stress caused by humidity change. Based on this model, self-desiccation, autogenous shrinkage and uniaxial diffusion drying tests were simulated and verified under different water-cement ratios and curing conditions, and the numerical simulation of dry-wet cycle test was carried out. Results show that the model has good adaptability, which can accurately simulate the evolution process of humidity and strain in the tests. The characteristics of strain and stress caused by humidity in dry-wet cycle test conform to the general law. This model can provide support for safety evaluation and life prediction of hydraulic concrete structures.



Key wordshydraulic concrete      thermo-hygro-chemical-dry-wet strain (THCD) multi-field coupled model      curing condition      strain      stress     
Received: 09 September 2022      Published: 31 August 2023
CLC:  TV 331  
Fund:  国家重点研发计划资助项目(2022YFC3005504);国家自然科学基金资助项目(U2040223, 51979207);第八届中国科协青年人才托举工程全额资助项目(2022QNRC001)
Corresponding Authors: Yong-gang CHENG     E-mail: yusizhen@whu.edu.cn;chengyg@whu.edu.cn
Cite this article:

Si-zhen YU,Tian-qi QI,Qiao WANG,Yong-gang CHENG,Wei ZHOU,Xiao-lin CHANG. Thermo-hygro-chemical-dry-wet strain multi-field coupled model of concrete. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1585-1596.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.011     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1585


混凝土热-水-化-干湿应变多场耦合模型

为了准确研究水工混凝土在服役环境中因湿度变化引起的应变应力特性,从基本理论出发,建立修正的热-水-化-干湿应变(THCD)多场耦合模型. 在已有模型的基础上,引入优化的化学亲和力函数和吸附等温线方程,实现对水化过程和湿度多阶段演变的准确模拟,进一步建立湿度和应变之间的关系,使模型可以对湿度变化引起的应变应力特性进行描述. 基于模型对不同水灰质量比及养护条件下的自干燥、自收缩、单轴扩散干燥试验进行模拟验证,并进行干湿循环试验的数值模拟. 结果表明,所提模型具有较好的适应性,可以准确模拟试验中湿度和应变的演变过程,在干湿循环试验中由湿度引起的应变应力特性符合一般规律. 该模型可以为水工混凝土结构的安全评估和寿命预测提供支撑.


关键词: 水工混凝土,  热-水-化-干湿应变(THCD)多场耦合模型,  养护条件,  应变,  应力 
Fig.1 Temperature comparison of adiabatic temperature rise test and numerical simulation
Fig.2 Humidity comparison of self-desiccation test and numerical simulation
Fig.3 Schematic diagram of thermo-hygro-chemical-dry-wet strain (THCD) multi-field coupled model
参数 数值 参数 数值
cp/(J·kg?1·K?1) 1100[18] Q/(kJ·kg?1) 500[18]
(Eac/R)/K 5000[13] β2 8×10?4[3]
ξc 0.253[27] β3 ?0.012[3]
a 5.5[17] ηc 9.4[4]
Tab.1 General model parameters of numerical simulation
mw / mc ρ / (kg·m?3) mc / kg g1 kc β1 / (108 h?1)
0.28 2394 541 2.00 0.100 1.94
0.30 2370 450 1.95 0.235 10.30
0.40 2344 423 1.73 0.251 3.65
0.43 2390 345 1.67 0.364 8.62
0.62 2386 240 1.41 0.456 5.00
0.68 2257 310 1.36 0.374 4.00
Tab.2 Main model parameters of self-desiccation tests
mw / mc E28 / GPa βE k0 k1
0.30 44.7 0.36 64.29 2.00
0.43 40.2 0.40 49.67 3.00
mw / mc k2 Ap v r / 10?4
0.30 ?1.10 0.01250 1.70 2.5
0.43 ?1.45 0.00302 3.65 3.2
Tab.3 Main model parameters of autogenous shrinkage tests
Fig.4 Verification of self-desiccation tests of concrete specimen
Fig.5 Verification of autogenous shrinkage tests of concrete specimen
mw / mc g1 kc Dd1 / (mm2·d?1) Hd
1) 注:(a, 25%)表示图6(a)中养护湿度为25%的情况.
0.34 (a1), 25%) 1.99 0.289 400 0.85
0.34 (a, 50%) 1.92 0.289 350 0.90
0.34 (a, 75%) 1.82 0.287 300 0.94
0.34 (b, 25%) 1.99 0.322 400 0.85
0.34 (b, 50%) 2.21 0.301 350 0.90
0.34 (b, 75%) 2.50 0.277 300 0.94
0.60 1.43 0.450 700 0.81
0.28 2.00 0.215 240 0.78
Tab.4 Model parameters of uniaxial diffusion drying tests
Fig.6 Verification of uniaxial diffusion drying tests of concrete specimen
Fig.7 Schematic diagram of dry-wet cycle test of concrete specimens
t / d 试验条件 Text / K hd
0~14 密封养护 293.15 ?
14~28 单轴干燥 293.15 0.40
28~42 单轴湿润 293.15 1.00
42~56 单轴干燥 293.15 0.40
56~70 单轴湿润 293.15 1.00
70~84 单轴干燥 293.15 0.40
84~98 单轴湿润 293.15 1.00
Tab.5 Environmental conditions of dry-wet cycle test
Fig.8 Sensitivity analysis of grid at a distance of 3 mm from drying surface after one day in self-desiccation
Fig.9 Sensitivity analysis of tolerance at a distance of 3 mm from drying surface after one day in self-desiccation
t / d Dd1 / (mm2·d?1) Hd n α
0~14 (密封干燥) 0 ? ? ?
14~28 (干燥) 260 0.75 4 0.10
28~42 (湿润) 800 0.80 4 0.10
42~56 (干燥) 230 0.75 4 0.10
56~70 (湿润) 400 0.80 4 0.10
70~84 (干燥) 230 0.75 4 0.10
84~98 (湿润) 260 0.80 4 0.10
Tab.6 Parameters of moisture diffusion coefficient under dry-wet cycle test
模型参数 数值 模型参数 数值 模型参数 数值
ρ/(kg·m?3) 2370 mc/kg 450 k1 2.1
ρc/(kg·m?3) 3000 β1/(h?1) 1.03×109 k2 ?1.1
E28/GPa 44.7 r 0.00025 Ap 0.0125
βE 0.38 k0 64.29 v 1.80
Tab.7 Main model parameters under dry-wet cycle test
Fig.10 IRH changes process at different distances from drying surface
Fig.11 Dry-wet strain changes process at different distances from drying surface
Fig.12 Numerical simulation results in 25 day during dry-wet cycle test
Fig.13 Numerical simulation results in 30 day during dry-wet cycle test
Fig.14 Numerical simulation results in 52 day during dry-wet cycle test
Fig.15 Numerical simulation results in 57 day during dry-wet cycle test
[1]   WU S X, HUANG D H, LIN F B, et al Estimation of cracking risk of concrete at early age based on thermal stress analysis[J]. Journal of Thermal Analysis and Calorimetry, 2011, 105 (1): 171- 186
doi: 10.1007/s10973-011-1512-y
[2]   唐世斌. 混凝土温湿型裂缝开裂过程细观数值模型研究[D]. 大连: 大连理工大学, 2009.
TANG Shi-bin. Study on mesoscopic numerical model of concrete cracking process of temperature-wet crack [D]. Dalian: Dalian University of Technology, 2009.
[3]   ZHOU W, QI T Q, LIU X H, et al A hygro-thermo-chemical analysis of concrete at an early age and beyond under dry-wet conditions based on a fixed model[J]. International Journal of Heat and Mass Transfer, 2017, 115: 488- 499
[4]   ZHOU W, FENG C Q, LIU X H, et al A macro-meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
[5]   ZHOU W, QI T Q, LIU X H, et al A meso-scale analysis of the hygro-thermo-chemical characteristics of early-age concrete[J]. International Journal of Heat and Mass Transfer, 2019, 129: 690- 706
doi: 10.1016/j.ijheatmasstransfer.2018.10.001
[6]   LI X, REN J J, WANG J, et al Drying shrinkage of early-age concrete for twin-block slab track[J]. Construction and Building Materials, 2020, 243: 118237
doi: 10.1016/j.conbuildmat.2020.118237
[7]   刘加平, 田倩, 王育江, 等 现代混凝土收缩开裂的评估方法与控制关键技术[J]. 工程, 2021, 7 (3): 348- 357
LIU Jia-ping, TIAN Qian, WANG Yu-jiang, et al Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7 (3): 348- 357
doi: 10.1016/j.eng.2021.01.006
[8]   刘有志, 张国新 混凝土干缩开裂机理宏、细观力学分析研究进展[J]. 水力发电, 2013, 39 (4): 24- 28
LIU You-zhi, ZHANG Guo-xin Research progress on macro and micro mechanics analysis of dry shrinkage cracking mechanism of concrete[J]. Water Power, 2013, 39 (4): 24- 28
doi: 10.3969/j.issn.0559-9342.2013.04.008
[9]   高珊. 混凝土面板堆石坝面板裂缝统计分析及渗流数值模拟研究[D]. 西安: 西安理工大学, 2021.
GAO Shan. Statistical analysis and seepage numerical simulation of concrete face rockfill dam[D]. Xi’an: Xi’an University of Technology, 2021.
[10]   BENTZ D P, WALLER V, LARRARD D F Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model[J]. Cement and Concrete Research, 1998, 28 (2): 285- 297
doi: 10.1016/S0008-8846(97)00264-0
[11]   KIM J K, LEE C S Moisture diffusion of concrete considering self-desiccation at early ages[J]. Cement and Concrete Research, 1999, 29 (12): 1921- 1927
doi: 10.1016/S0008-8846(99)00192-1
[12]   ZHANG J, GAO Y, HAN Y D, et al Shrinkage and interior humidity of concrete under dry-wet cycles[J]. Drying Technology, 2012, 30 (6): 583- 596
doi: 10.1080/07373937.2011.653614
[13]   RUIZ C M, OLIVER O X, PRATO T Thermo-chemical- mechanical model for concrete. I: hydration and aging[J]. Journal of Engineering Mechanics, 1999, 125 (9): 1018- 1027
doi: 10.1061/(ASCE)0733-9399(1999)125:9(1018)
[14]   CERVERA M, FARIA R, OLIVER J, et al Numerical modelling of concrete curing, regarding hydration and temperature phenomena[J]. Computers and Structures, 2002, 80 (18/19): 1511- 1521
[15]   ULM F J, COUSSY O Modeling of thermo-chemical- mechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121 (7): 785- 794
doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
[16]   BAŽANT Z P, NAJJAR L J Nonlinear water diffusion in nonsaturated concrete[J]. Matériaux et Construction, 1972, 5 (1): 3- 20
[17]   GAWIN D, PESAVENTO F, SCHREFLER B A Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro-thermal phenomena[J]. International Journal for Numerical Methods in Engineering, 2006, 67 (3): 299- 331
doi: 10.1002/nme.1615
[18]   LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high performance concrete. I: theory[J]. Cement and Concrete Composites, 2009, 31 (5): 301- 308
doi: 10.1016/j.cemconcomp.2009.02.015
[19]   LUZIO D G, CUSATIS G Hygro-thermo-chemical modeling of high-performance concrete. II: numerical implementation, calibration, and validation[J]. Cement and Concrete Composites, 2009, 31 (5): 309- 324
doi: 10.1016/j.cemconcomp.2009.02.016
[20]   JENDELE L, SMILAUER V, CERVENKA J Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures[J]. Advances in Engineering Software, 2014, 72: 134- 146
doi: 10.1016/j.advengsoft.2013.05.002
[21]   SHEN D J, LIU C, WANG M L, et al Prediction model for internal relative humidity in early-age concrete under different curing humidity conditions[J]. Construction and Building Materials, 2020, 265: 119987
doi: 10.1016/j.conbuildmat.2020.119987
[22]   RHODES J A, CARREIRA D J. Prediction of creep, shrinkage, and temperature effects in concrete structures [J]. American Concrete Institute, 1982.
[23]   GILLILAND J A. Thermal and shrinkage effects in high performance concrete structures during construction[M]. University of Calgary, 2000.
[24]   高原, 张君, 孙伟 干湿循环下混凝土湿度与变形的测量[J]. 清华大学学报: 自然科学版, 2012, 52 (2): 144- 149
GAO Yuan, ZHANG Jun, SUN Wei Measurement of concrete moisture and deformation under dry-wet cycle[J]. Journal of Tsinghua University: Science and Technology, 2012, 52 (2): 144- 149
[25]   钟卓, 黄乐鹏, 张恒 混凝土内部湿度场与自约束应力场的研究[J]. 硅酸盐通报, 2021, 40 (8): 2609- 2621
ZHONG Zhuo, HUANG Le-peng, ZHANG Heng Study on humidity field and self-constrained stress field in concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40 (8): 2609- 2621
doi: 10.16552/j.cnki.issn1001-1625.2021.08.011
[26]   高原. 干湿环境下混凝土收缩与收缩应力研究[D]. 北京: 清华大学, 2013.
GAO Yuan. Study on shrinkage and shrinkage stress of concrete in dry and wet environment[D]. Beijing: Tsinghua University, 2013.
[27]   PANTAZOPOULOU S J, MILLS R H Microstructural aspects of the mechanical response of plain concrete[J]. Materials Journal, 1995, 92 (6): 605- 616
[28]   BAŽANT Z P, PRASANNAN S Solidification theory for concrete creep. I: formulation[J]. Journal of Engineering Mechanics, 1989, 115 (8): 1691- 1703
[29]   NEVILLE A M. Properties of concrete[M]. London: Longma , 1995.
[30]   BAZANT Z P, THONGUTHAI W Pore pressure and drying of concrete at high temperature[J]. Journal of the Engineering Mechanics Division, 1978, 104 (5): 1059- 1079
doi: 10.1061/JMCEA3.0002404
[31]   阴国强, 张秀崧, 卢晓春, 等 等温条件下混凝土内部湿迁移规律研究[J]. 水电能源科学, 2022, 40 (4): 162- 165
YIN Guo-qiang, ZHANG Xiu-song, LU Xiao-chun, et al Study on the law of wet migration in concrete under isothermal conditions[J]. Water Resources and Power, 2022, 40 (4): 162- 165
[32]   KANG S T, KIM J S, LEE Y, et al Moisture diffusivity of early age concrete considering temperature and porosity[J]. KSCE Journal of Civil Engineering, 2012, 16 (1): 179- 188
doi: 10.1007/s12205-012-1445-4
[33]   MJÖRNELL K N. A model on self-desiccation in high- performance concrete [C]// Proceedings of an International Research Seminar on Self-desiccation and its Importance in Concrete Technology. Lund: [s. n.]. 1997: 141-157.
[34]   BAROGHEL-BOUNY V, MAINGUY M, LASSABA- TERE T, et al Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials[J]. Cement and Concrete Research, 1999, 29 (8): 1225- 1238
doi: 10.1016/S0008-8846(99)00102-7
[35]   XI Y P, BAZANT Z P, JENNINGS H M Moisture diffusion in cementitious materials adsorption isotherms[J]. Advanced Cement Based Materials, 1994, 1 (6): 248- 257
doi: 10.1016/1065-7355(94)90033-7
[36]   BENTZ D P Transient plane source measurements of the thermal properties of hydrating cement pastes[J]. Materials and Structures, 2007, 40: 1073- 1080
[37]   KOVLER K, ZHUTOVSKY S Overview and future trends of shrinkage research[J]. Materials and Structures, 2006, 39 (9): 827- 847
doi: 10.1617/s11527-006-9114-z
[38]   赵立晓, 王鹏刚, 王兰芹, 等 混凝土内部温湿度响应参数分析: 水分扩散系数与导热系数[J]. 材料导报, 2021, 35 (12): 12075- 12080
ZHAO Li-xiao, WANG Peng-gang, WANG Lan-qin, et al Analysis of concrete internal temperature and humidity response parameters: water diffusion coefficient and thermal conductivity coefficient[J]. Materials Reports, 2021, 35 (12): 12075- 12080
doi: 10.11896/cldb.20040215
[1] Wei-liang XIONG,De-feng HE,Xiu-li WANG,Dan ZHOU. Scenario optimization robust predictive control via Gaussian regression learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 693-701.
[2] Jia-wen BAO,Qiang GAO,Lin TANG,Wei-jian ZHAO. Refined finite element analysis of tensile property of grout sleeve splicing of rebars[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 814-823.
[3] Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.
[4] Ya-feng WANG,Li-hua ZHOU,Wei CHEN,Li-zhen WANG,Hong-mei CHEN. Community search with mutual information maximization over heterogeneous information networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 287-298.
[5] Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.
[6] Jia-ao JIN,Hong-yao SHEN,Yang-fan SUN,Jia-hao LIN,Jing-ni CHEN. Single-line laser scanning path planning for wire arc and additive manufacturing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 21-31.
[7] Yu-xuan XIAO,Gang MA,Xi LU,Wei ZHOU,Di WANG,Ze-kai MIAO. Breakage behaviour of rockfill particles in complicated constraint patterns[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1514-1522, 1559.
[8] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[9] Shan-shan WANG,Ming GAO,Jian-jiang SHI. Current stress optimization of dual Buck-Boost integrated DAB three-port DC-DC converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1425-1435, 1472.
[10] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[11] Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.
[12] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[13] Jian-sha LU,Jing-hao JIN,Wen-bin ZHAO,Qing-feng CHEN,Wei-guang JIANG. Lot streaming hybrid assembly flow shop scheduling on migratory bird algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2135-2144.
[14] Yong-xiao DU,Jun WEI,Xiao-li SUN. Fatigue evolution of natural frequency for prestressed concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2007-2018.
[15] Chao JI,Qing-he ZHANG,Dian-guang MA,Yue-feng WU,Qi JIANG. Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 128-136.