Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1514-1522, 1559    DOI: 10.3785/j.issn.1008-973X.2022.08.005
    
Breakage behaviour of rockfill particles in complicated constraint patterns
Yu-xuan XIAO1,2,3(),Gang MA1,2,*(),Xi LU4,Wei ZHOU1,2,Di WANG1,2,Ze-kai MIAO1,2
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China
3. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China
4. Power China Northwest Engineering Co. Ltd, Xi'an 710065, China
Download: HTML     PDF(3865KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Physical tests and numerical experiments based on the combined finite-discrete element method (FDEM) were carried out, in order to study the grain breakage behavior under different constraint patterns in three-dimension conditions. Different constraint patterns were considered by changing the number and position of the surrounding constraints of a particle. The singular value decomposition (SVD) was used to quantify the particle constraint pattern. The effects of constraint patterns on breakage mode, particle strength and fragments size distribution were investigated. Test results indicated that the breakage modes of particles showed three typical forms, chipping, splitting and fragmentation. According to statistical results, the change of crushing load was negligible in the range of four to six constraints, proving the applicability of maximum contact force criterion in the discrete element method (DEM) simulation. The fragment size distributions under different numbers of constraints were explored to provide clues for developing a more realistic fragment replacement mode in DEM simulation.



Key wordsparticle breakage      constraint pattern      combined finite-discrete element method      breakage mode      particle strength      fragment size distribution     
Received: 08 August 2021      Published: 30 August 2022
CLC:  TV 41  
Fund:  国家自然科学基金资助项目(51825905, U1865204);华能集团科技资助项目(HNKJ18-H26)
Corresponding Authors: Gang MA     E-mail: yx_xiao@whu.edu.cn;magang630@whu.edu.cn
Cite this article:

Yu-xuan XIAO,Gang MA,Xi LU,Wei ZHOU,Di WANG,Ze-kai MIAO. Breakage behaviour of rockfill particles in complicated constraint patterns. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1514-1522, 1559.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.005     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1514


堆石颗粒在复杂约束模式的破碎特性

为了研究三维情况下单个颗粒在不同约束模式下的破碎特性,对颗粒开展了物理试验和基于连续-离散耦合数值分析方法(FDEM)的数值试验研究. 通过改变颗粒周边约束的个数和位置,设定了不同的约束模式,并采用奇异值分解 (SVD) 对颗粒约束模式进行量化,分析约束模式对颗粒破碎模式、破碎强度和碎片尺寸分布的影响. 结果表明,颗粒在不同的约束模式下呈现出3种典型的破碎形式:削切、劈裂和碎裂. 统计不同约束个数下的颗粒破碎峰值荷载,其在4~6个约束个数情况下变化并不明显,可以认为在离散元数值 (DEM)模拟中采用接触力准则判断颗粒破碎具有一定的适用性. 分析碎片尺寸分布,为构建更加合理的碎片替换模式进行离散元颗粒破碎模拟提供了参考和依据.


关键词: 颗粒破碎,  约束模式,  连续-离散耦合分析方法,  破碎模式,  破碎强度,  碎片尺寸分布 
Fig.1 Artificial grains preparation flow
Fig.2 INSTRON5969 universal material testing machine
Fig.3 Loading fixture with clamping bars
Fig.4 Failure modes of grains under different constraints patterns
Fig.5 Cracks development of grain in 6-M1 mode
Fig.6 Three typical breakage modes of grains (physical test)
Fig.7 FDEM model of sphere grain
Fig.8 Force matrix schematic diagram in constraints pattern of four constraints
Fig.9 Weibull fitting curves of grain crushing strengths for thirty ellipsoidal rockfill materials
参数 数值 单位
实体单元 密度ρ 2700 kg/m3
弹性模量E 80 GPa
泊松比υ 0.2 ?
界面单元 法向刚度kn 6.0×1013 N/m3
切向刚度ks 2.5×1013 N/m3
抗拉强度ft 28 MPa
内摩擦角φi 40 (°)
裂纹内摩擦角φf 30 (°)
凝聚力c 85 MPa
Ⅰ型断裂能G 100 N/m
Ⅱ型断裂能G 500 N/m
接触参数 单元间摩擦系数 ${\mu _{\rm{e}}}$ 0.5 ?
单元与加载板摩擦系数 ${\mu _{\rm{r}}}$ 0.1 ?
Tab.1 Input parameters used in FDEM model
Fig.10 Force-displacement curve of grain in FDEM numerical simulation
Fig.11 Constraint patterns in different numbers of constraint plates
Fig.12 Mises stress of grain in 4-M1 mode during fracture process
Fig.13 Three typical breakage modes of grains (numerical simulation)
Fig.14 Proportions of three grain breakage modes under different numbers of constraint plates
Fig.15 Relation between number of fragment and singular value
Fig.16 Relation between fracture dissipated energy during particle breakage and singular value
Fig.17 Cumulative distribution of fragments under different numbers of constraint
Fig.18 Peak load at crushing of particles with different breakage modes
Fig.19 Peak load at crushing of particles with different numbers of contraints
[1]   HARDIN B O, ASCE F Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111 (10): 1177- 1192
doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
[2]   LOBO-GUERRERO S, VALLEJO L E Crushing a weak granular material: experimental numerical analyses[J]. Géotechnique, 2005, 55 (3): 245- 249
[3]   INDRARATNA B, LACKENBY J, CHRISTIE D Effect of confining pressure on the degradation of ballast under cyclic loading[J]. Géotechnique, 2005, 55 (4): 325- 328
[4]   陈生水, 霍家平, 章为民 “5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, (6): 795- 801
CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min Analysis of effects of “5.12” Wenchuan Earthquake on Zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, (6): 795- 801
doi: 10.3321/j.issn:1000-4548.2008.06.003
[5]   徐琨, 周伟, 马刚 颗粒破碎对堆石料填充特性缩尺效应的影响研究[J]. 岩土工程学报, 2020, 42 (6): 1013- 1022
XU Kun, ZHOU Wei, MA Gang Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1013- 1022
[6]   郭熙灵, 胡辉, 包承纲 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J]. 岩土工程学报, 1997, (3): 86- 91
GUO Xi-ling, HU Hui, BAO Cheng-gang Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill[J]. Chinese Journal of Geotechnical Engineering, 1997, (3): 86- 91
doi: 10.3321/j.issn:1000-4548.1997.03.013
[7]   ZHOU W, YANG L, MA G, et al Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17 (4): 497- 509
doi: 10.1007/s10035-015-0571-3
[8]   WANG D, CARMELIET J, ZHOU W, et al On the effect of grain fragmentation on frictional instabilities in faults with granular gouge[J]. Journal of Geophysical Research: Solid Earth, 2021, 126 (5): e2020JB020510
[9]   YE Y, ZENG Y, SUN H, et al An experimental study on the influence of multiple contacts and size on contact behavior of marble sphere[J]. Granular Matter, 2021, 23 (2): 1- 13
[10]   WANG Y, MA G, MEI J, et al Machine learning reveals the influences of grain morphology on grain crushing strength[J]. Acta Geotechnica, 2021, 1- 14
[11]   马刚, 王渊, 程家林, 等 遇水湿化对堆石体颗粒破碎和压缩特性的影响研究[J]. 岩土工程学报, 2021, 43 (9): 1640- 1648
MA Gang, WANG Yuan, CHENG Jia-lin, et al Influences of wetting on crushing and compression characteristics of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (9): 1640- 1648
[12]   MCDOWELL G R, BONO J On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63 (11): 895- 908
[13]   MCDOWELL G R, HARIRECHE O Discrete element modelling of soil particle fracture[J]. Géotechnique, 2002, 52 (2): 131- 136
[14]   HUANG J, XU S, YI H, et al Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268: 86- 94
doi: 10.1016/j.powtec.2014.08.037
[15]   MCDOWELL G R On the yielding and plastic compression of sand[J]. Soils and Foundation, 2002, 42 (1): 139- 145
doi: 10.3208/sandf.42.139
[16]   MCDOWELL G R, HUMPHREYS A Yielding of granular materials[J]. Granular Matter, 2002, 4 (1): 1- 8
[17]   TURCOTTE D Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91 (B2): 1921- 1926
doi: 10.1029/JB091iB02p01921
[18]   徐永福, 王益栋, 奚悦, 等 岩石颗粒破碎的尺寸效应[J]. 工程地质学报, 2014, 22 (6): 1023- 1027
XU Yong-fu, WANG Yi-dong, XI Yue, et al Size effect on crushing of rock particles[J]. Journal of Engineering Geology, 2014, 22 (6): 1023- 1027
[19]   王益栋, 徐永福, 奚悦 岩石单颗粒压缩破碎试验研究[J]. 固体力学学报, 2015, 36 (6): 517- 523
WANG Yi-dong, XU Yong-fu, XI Yue, et al Single rock particles crushing in uniaxial compression tests[J]. Chinese Journal of Solid Mechanics, 2015, 36 (6): 517- 523
[20]   周海娟, 马刚, 袁葳, 等 堆石颗粒压缩破碎强度的尺寸效应[J]. 岩土力学, 2017, 38 (8): 2425- 2433
ZHOU Hai-juan, MA Gang, YUAN Wei, et al Size effect on the crushing strengths of rock particles[J]. Rock and Soil Mechanics, 2017, 38 (8): 2425- 2433
[21]   孟敏强, 王磊, 蒋翔, 等 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41 (9): 2953- 2962
MENG Min-qiang, WANG Lei, JIANG Xiang, et al Single-particle crushing test and numerical simulation of coarse grained soil based on size effect[J]. Rock and Soil Mechanics, 2020, 41 (9): 2953- 2962
[22]   WANG W, COOP M R An investigation of breakage behaviour of single sand particles using a high-speed microscope camera[J]. Géotechnique, 2016, 66 (12): 1- 15
[23]   MA G, ZHOU W, REGUEIRO R A, et al Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2016, 308: 388- 397
[24]   ZHOU B, WEI D, QUAN K, et al Study on the effect of particle morphology on single particle breakage using a combined finite-discrete element method[J]. Computers and Geotechnics, 2020, 122: 103532
doi: 10.1016/j.compgeo.2020.103532
[25]   孙壮壮, 马刚, 周伟, 等 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42 (2): 430- 438
SUN Zhuang-zhuang, MA Gang, ZHOU Wei, et al Effect of particle shape on size effect of crushing strength of rockfill particles[J]. Rock and Soil Mechanics, 2021, 42 (2): 430- 438
[26]   SALAMI Y, DANO C, HICHER P Y, et al. The effects of the coordination on the fragmentation of a single grain[C]// Proceedings of ISGG. Warwick: IOP, 2015, 26(1): 012015.
[27]   SALAMI Y, DANO C, HICHER P Y An experimental study on the influence of the coordination number on grain crushing[J]. European Journal of Environmental and Civil Engineering, 2017, 23 (3): 1- 17
[28]   邓璇璇, 马刚, 周伟, 等 局部约束模式对单颗粒破碎强度的影响[J]. 浙江大学学报:工学版, 2018, 52 (7): 1329- 1337
DENG Xuan-xuan, MA Gang, ZHOU Wei, et al Effects of local constrains patterns on fragmentation of single grain[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1329- 1337
[29]   ZHU F, ZHAO J A peridynamic investigation on crushing of sand particles[J]. Géotechnique, 2019, 69 (6): 526- 540
[30]   KUANG D M, LONG Z L, GUO R Q, et al Numerical investigation of the cushion and size effects during single-particle crushing via DEM[J]. Acta Mechanica Solida Sinica, 2020, 33 (6): 851- 863
doi: 10.1007/s10338-020-00191-y
[31]   徐琨, 周伟, 马刚, 等 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40 (5): 880- 889
XU Kun, ZHOU Wei, MA Gang, et al Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (5): 880- 889
doi: 10.11779/CJGE201805013
[32]   ZHOU W, WANG D, MA G, et al Discrete element modeling of particle breakage considering different fragment replacement modes[J]. Powder Technology, 2020, 360: 312- 323
doi: 10.1016/j.powtec.2019.10.002
[33]   杨贵, 许建宝, 孙欣, 等 颗粒形状对人工模拟堆石料强度和变形特性影响的试验研究[J]. 岩土力学, 2017, 38 (11): 3113- 3118+3153
YANG Gui, XU Jian-bao, SUN Xin, et al Experimental study of influence of particle shape on strength and deformation for artificial rockfill materials[J]. Rock and Soil Mechanics, 2017, 38 (11): 3113- 3118+3153
[34]   孔德志, 张丙印, 孙逊 钢珠模拟堆石料三轴试验研究[J]. 水力发电学报, 2010, 29 (2): 210- 215+221
KONG De-zhi, ZHANG Bing-yin, SUN Xun Triaxial tests on artificial rockfill materials of steel balls[J]. Journal of Hydroelectric Engineering, 2010, 29 (2): 210- 215+221
[35]   SHEN C, YU J, LIU S, et al A unified fractional breakage model for granular materials inspired by the crushing tests of dyed gypsum particles[J]. Construction and Building Materials, 2021, 270: 121366
doi: 10.1016/j.conbuildmat.2020.121366
[36]   季顺迎, 李鹏飞, 陈晓东 冲击荷载下颗粒物质缓冲性能的试验研究[J]. 物理学报, 2012, 61 (18): 299- 305
JI Shun-ying, LI Peng-fei, CHEN Xiao-dong Experiments on shock-absorbing capacity of granular matter under impact load[J]. Acta Physica Sinica, 2012, 61 (18): 299- 305
doi: 10.7498/aps.61.184703
[37]   MAHABADI O K, LISJAK A, MUNJIZA A, et al Y-Geo: new combined finite-discrete element numerical code for geomechanical applications[J]. International Journal of Geomechanics, 2012, 12 (6): 676- 688
doi: 10.1061/(ASCE)GM.1943-5622.0000216
[38]   MA G, ZHOU W, CHANG X L Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132- 143
doi: 10.1016/j.compgeo.2014.05.006
[39]   MA G, ZHOU W, REGUEIRO R A, et al Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388- 397
doi: 10.1016/j.powtec.2016.11.046
[40]   常晓林, 胡超, 马刚, 等 模拟岩体失效全过程的连续-非连续变形体离散元方法及应用[J]. 岩石力学与工程学报, 2011, 30 (10): 2004- 2011
CHANG Xiao-lin, HU Chao, MA Gang, et al Continuous-discontinuous deformable discrete element method to simulate the whole failure process of rock masses and applicatidn[J]. Chinese Journal of Rock Mechanics and Enginecring, 2011, 30 (10): 2004- 2011
[41]   焦玉勇, 张秀丽, 刘泉声, 等 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, (4): 682- 691
JIAO Yu-yong, ZHANG Xiu-li, LIU Quan-sheng, et al Simulation of rock crack propagation using discontinuous deformable analysis method[J]. Chinese Journal of Rock Mechanics and Enginecring, 2007, (4): 682- 691
doi: 10.3321/j.issn:1000-6915.2007.04.004
[42]   ROE K L, SIEGMUND T An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70 (2): 209- 232
doi: 10.1016/j.compgeo.2014.05.006
[43]   DUGDALE D S Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2): 100- 104
doi: 10.1016/0022-5096(60)90013-2
[44]   BARENBLATT G I The Mechanical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55- 129
[45]   JOLLIFFE I T Principal component analysis[J]. Journal of Marketing Research, 2002, 87 (4): 513
[46]   MCDOWELL G R, AMON A The application of Weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40 (5): 133- 141
doi: 10.3208/sandf.40.5_133
[47]   LIM W L, MCDOWELL G R, COLLOP A C The application of Weibull statistics to the strength of railway ballast[J]. Granular Matter, 2004, 6: 229- 237
doi: 10.1007/s10035-004-0180-z
[48]   周剑, 马刚, 周伟, 等 基于FDEM的岩石颗粒破碎后碎片形状的统计分析[J]. 浙江大学学报:工学版, 2021, 55 (2): 348- 357
ZHOU Jian, MA Gang, ZHOU Wei, et al Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 348- 357
[1] DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1329-1337.
[2] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.