Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 21-31    DOI: 10.3785/j.issn.1008-973X.2023.01.003
    
Single-line laser scanning path planning for wire arc and additive manufacturing
Jia-ao JIN1,2(),Hong-yao SHEN1,2,*(),Yang-fan SUN1,2,Jia-hao LIN1,2,Jing-ni CHEN1,2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2021KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The CAD model was used as input in order to obtain the shape and size information of the part in wire arc and additive manufacturing (WAAM). The working constraints of the single-line laser scanner were analyzed through experiments. The algorithm of scanning path generation for single-line laser automatic measurement was realized, and the effectiveness of the method was verified by simulation and experiment. The appropriate scanning distance and scanning angle were obtained as the path planning constraints through multiple experiments. The single scan path for the input model was iteratively generated by using methods such as maximum connected region solving algorithm, minimum projection rectangle solving, equal overlapping path planning, etc. The nearest point search and collision detection algorithm were used for a single path optimization in order to generate the trajectory of robot end in series. The trajectory was corrected by simulation. The experimental results show that the path planning method can achieve great measurement accuracy, efficiency and coverage for WAAM part. The measurement results can provide rich profile information for the subsequent additive and subtractive hybrid manufacturing process.



Key wordswire arc and additive manufacturing      single-line laser measurement      scanning constraint      path planning      error analysis     
Received: 01 March 2022      Published: 17 January 2023
CLC:  TH 741  
  TH 164  
Fund:  国家自然科学基金资助项目(51975518,51821093);国家青年科学基金资助项目(52005438);浙江省杰出青年科学基金资助项目(LR22E050002);宁波市科技计划资助项目(2020Z012);浙江省重点研发计划资助项目(2021C01096)
Corresponding Authors: Hong-yao SHEN     E-mail: jinjiaaoux@foxmail.com;shenhongyao@zju.edu.cn
Cite this article:

Jia-ao JIN,Hong-yao SHEN,Yang-fan SUN,Jia-hao LIN,Jing-ni CHEN. Single-line laser scanning path planning for wire arc and additive manufacturing. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 21-31.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.003     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/21


面向电弧增材的单线激光扫描路径规划

为了在电弧增材制造(WAAM)过程中获取零件的形貌尺寸信息,以CAD模型作为输入,通过实验分析单线激光扫描仪的工作约束条件,实现基于单线激光的零件外形扫描路径生成算法,开展仿真与实验验证. 通过多组实验获取合适的扫描距离和扫描角度作为路径规划约束,针对输入模型迭代使用最大连通区域求解算法、求解最小投影矩形、等重叠路径规划等多种方法生成单次扫描路径. 对单条路径优化,使用最近点搜索和碰撞检测算法,串联生成机器人末端运动轨迹,借助仿真对轨迹进行修正. 实验结果证明,该路径规划方法对电弧增材零件能够达到较好的测量精度、效率及覆盖率. 测量结果可以为后续增减材复合制造过程提供丰富的轮廓信息.


关键词: 电弧增材制造,  单线激光测量,  扫描约束,  路径规划,  误差分析 
Fig.1 Shape diagram of WAAM part
Fig.2 Constraints of single-line laser scanner
Fig.3 Experiment of scanning constraints
Fig.4 Plane fitted distance RMS vs h and β
Fig.5 Number of scanning points vs h and β
Fig.6 Flowchart of scanning path planning
Fig.7 Thin-walled converter part model
Fig.8 Schematic diagram of largest connected area
Fig.9 Schematic diagram of calculating constrained patches
Fig.10 Generation of connected area scanning path
Fig.11 3D scanning path at full coverage
Fig.12 Path without blank scanning
Fig.13 Three-dimensional scanning path after effective scanning optimization
Fig.14 Schematic diagram of collision detection
Fig.15 Three-dimensional path planning result for converter model
Fig.16 3D path planning results for other types of models
Fig.17 Robot scanning simulation system
Fig.18 Coordinate transformation of measuring system
Fig.19 Simulation motion path of end of robot
Fig.20 Process of scanning experiment
Fig.21 Scanning point cloud of converter
Fig.22 Error cloud image of converter part
[1]   SINGH S, SHARMA K S, RATHOD W D A review on process planning strategies and challenges of WAAM[J]. Materials Today: Proceedings, 2021, 47 (19): 6564- 6575
[2]   SINGH R S, KHANNA P Wire arc additive manufacturing (WAAM): a new process to shape engineering materials[J]. Materials Today: Proceedings, 2021, 44 (1): 118- 128
[3]   WU Bin-tao, PAN Zeng-xi, DING Dong-hong, et al A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35 (1): 127- 139
[4]   李友浩. 基于线结构光的电弧增材制造熔积层形貌三维测量[D]. 武汉: 华中科技大学, 2016.
LI You-hao. Deposition layer’s 3d measurement of arc-based additive manufacturing based on line-structured light [D]. Wuhan: Huazhong University of Science and Technology, 2016.
[5]   DING Dong-hong, PAN Zeng-xi, CUIURI D, et al Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81 (1): 465- 481
[6]   SINGH P, DUTTA D. Multi-direction layered deposition: an overview of process planning methodologies [EB/OL]. [2003-01-01]. http://dx.doi.org/10.26153/tsw/5563.
[7]   LIU Bing, SHEN Hong-yao, DENG Rong-xin, et al Research on a planning method for switching moments in hybrid manufacturing processes[J]. Journal of Manufacturing Processes, 2020, 56 (A): 786- 795
[8]   RAUT L P, TAIWADE R V Wire arc additive manufacturing: a comprehensive review and research directions[J]. Journal of Materials Engineering and Performance, 2021, 30 (1): 4768- 4791
[9]   杜军, 马琛, 魏正英 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1481- 1489
DU Jun, MA Chen, WEI Zheng-ying Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1481- 1489
[10]   BAI X W, ZHANG H O, WANG G L Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging[J]. The International Journal of Advanced Manufacturing Technology, 2013, 69 (1): 1087- 1095
[11]   KARUNAKARAN P K, SURYAKUMAR S, PUSHPA V, et al Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26 (5): 490- 499
doi: 10.1016/j.rcim.2010.03.008
[12]   SHEN Hong-yao, JIN Jia-ao, LIU Bing, et al Measurement and evaluation of laser-scanned 3D profiles in wire arc hybrid manufacturing processes[J]. Measurement, 2021, 176: 109089
doi: 10.1016/j.measurement.2021.109089
[13]   DING Li-jun, DAI Shu-guang, MU Ping-an. CAD-based path planning for 3d laser scanning of complex surface [C]// 2nd International Conference on Intelligent Computing, Communication and Convergence. Odisha: Elsevier, 2016: 526–535.
[14]   LARSSON S, KJELLANDER A P J Path planning for laser scanning with an industrial robot[J]. Robotics and Autonomous Systems, 2008, 56: 615- 624
doi: 10.1016/j.robot.2007.10.006
[15]   PHAN D M N, QUINSAT Y, LAVERNHE S, et al Path planning of a laser-scanner with the control of overlap for 3d part inspection[J]. Procedia CIRP, 2018, 67: 392- 397
doi: 10.1016/j.procir.2017.12.231
[16]   LARTIGUE C, QUINSAT Y, CHARYAR M S, et al Voxel-based path planning for 3d scanning of mechanical parts[J]. Computer-Aided Design and Applications, 2014, 11 (2): 220- 227
doi: 10.1080/16864360.2014.846096
[17]   艾小祥, 俞慈君, 方强, 等 基于遗传算法的机翼壁板扫描路径优化[J]. 浙江大学学报: 工学版, 2015, 49 (3): 448- 456
AI Xiao-xiang, YU Ci-jun, FANG Qiang, et al Optimized scanning path of wing panel based on genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (3): 448- 456
[18]   YANG Yi-peng, LI Zhao-ting, YU Xing-hu, et al A trajectory planning method for robot scanning system using mask R-CNN for scanning objects with unknown model[J]. Neurocomputing, 2020, 404: 329- 339
doi: 10.1016/j.neucom.2020.04.059
[19]   刘阳. 基于激光感知的喷涂机器人智能编程算法研究与软件开发[D]. 南京: 东南大学, 2018.
LIU Yang. Research on intelligent programming algorithm and software development of painting robot based on laser sensing [D]. Nanjing: Southeast University, 2018.
[20]   王鹏. 线结构光三维自动扫描系统关键技术的研究[D]. 天津: 天津大学, 2008.
WANG Peng. Study on key techniques for automatic 3d structured-light scanning system [D]. Tianjin: Tianjin University, 2008.
[21]   张晓蕾. 基于动态路径规划的三维扫描方法研究[D]. 大连: 大连理工大学, 2017.
ZHANG Xiao-lei. The research of 3d scanning method based on dynamic path planning [D]. Dalian: Dalian University of Technology, 2017.
[22]   王朝. 结合机器视觉路径规划的激光三角法零件精密测量系统研究[D]. 武汉: 华中科技大学, 2019.
WANG Chao. Research of high precision measurement system for laser triangulation method combined with machine vision path planning [D]. Wuhan: Huazhong University of Science and Technology, 2019.
[23]   MAHMUDA M, JOANNICB D, ROY M, et al 3D part inspection path planning of a laser scanner with control on the uncertainty[J]. Computer-Aided Design, 2011, 43 (4): 345- 355
doi: 10.1016/j.cad.2010.12.014
[24]   DONG Zhi-xu, SUN Xing-wei, LIU Wei-jun, et al Measurement of free-form curved surfaces using laser triangulation[J]. Sensors, 2018, 18 (10): 3527
doi: 10.3390/s18103527
[25]   SON S, LEE K H. Automated scan plan generation using STL meshes for 3D stripe-type laser scanner [C]// Computational Science and Its Applications. Germany: Springer, 2003: 424–435.
[1] Wei-xiang XU,Nan KANG,Ting XU. Optimal path planning method based on travel plan data[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1542-1552.
[2] Hua-jian DENG,Hao WANG,Ben-dong WANG,Zhong-he JIN. High-precision compensation and calibration method for four-quadrant analog sun sensor[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1993-2001.
[3] Jing-li WU,Guo-dong YI,Le-miao QIU,Shu-you ZHANG. Path planning of mobile robots in mixed obstacle space with high temperature[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1806-1814.
[4] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.
[5] Jun LIU,Shuo FENG,Jian-hua REN. Directed D* algorithm for dynamic path planning of mobile robots[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 291-300.
[6] HUANG Zi-liang, OUYANG Xiao-ping, ZHAO Tian-fei, ZHANG Jian-bo, ZHOU Liang, YANG Hua-yong. Characteristic of air content detection system for aircraft hydraulics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 158-165.
[7] CHEN Xing-yu, HUANG Shan-he, He Hao-zhe. Measurement error due to frequency selection in multi-frequency suspended sediment measurement system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 307-316.
[8] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 706-713.
[9] AI Xiao-xiang, YU Ci-jun, FANG Qiang, CHEN Lei, FANG Wei, SHEN Li-heng. Optimized scanning path of wing panel based on genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 448-456.
[10] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1546-1552.
[11] LUO Yong-jie, YANG Yong-ying, TIAN Chao, WEI Tao, ZHUO Yong-mo. Error analysis and processing of partial compensatory
aspheric testing system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 636-642.
[12] LIN Yuan-fang, HUANG Qiang-sheng, RU Qi-tian, SUN Shuo, ZHENG Xiao-dong. Impact of ellipsometric parameters measurement error on
measurement accuracy of thin film parameters
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1485-1489.
[13] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 794-798.