Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2019, Vol. 53 Issue (1): 158-165    DOI: 10.3785/j.issn.1008-973X.2019.01.017
Mechanical Engineering     
Characteristic of air content detection system for aircraft hydraulics
HUANG Zi-liang1, OUYANG Xiao-ping1, ZHAO Tian-fei1, ZHANG Jian-bo2, ZHOU Liang2, YANG Hua-yong1
1. State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China;
2. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
Download:   PDF(1159KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An air content detection system for aircraft hydraulics was designed in order to monitor the working condition of aircraft hydraulic system and the performance of hydraulic oil. The detecting principle and composition were introduced. The main factors that affected the measurement accuracy were analyzed respectively according to the error transfer theory in order to calculate its comprehensive errors, which met the design requirements. The test bench was constructed in order to simulate the working conditions of air content detection system. The structural reliability of the test bench was analyzed by Hypermesh. Impermeability test and air state test were conducted to verify the correctness of the theoretical design of the system. The data of the repeatability test of air content showed that the principle of air content detection system was correct, and the test accuracy accorded with the theoretical analysis. The system fulfilled the requirements. The temperature tests were conducted to analyze the impact of temperature on the air content in aircraft hydraulic oil. The prototype has successfully obtained acceptance of Shanghai Aircraft Design and Research Institute through the application test at iron bird station of C919.



Received: 26 December 2017      Published: 07 January 2019
CLC:  TH137  
Cite this article:

HUANG Zi-liang, OUYANG Xiao-ping, ZHAO Tian-fei, ZHANG Jian-bo, ZHOU Liang, YANG Hua-yong. Characteristic of air content detection system for aircraft hydraulics. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 158-165.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.01.017     OR     http://www.zjujournals.com/eng/Y2019/V53/I1/158


飞机液压含气量检测系统特性

为了监控飞机液压系统的工作状况与液压油的性能,设计飞机液压含气量检测系统,介绍检测原理和组成. 利用误差传播法,逐一分析影响测量精度的关键因素,得到系统的综合测量误差,满足设计要求;为了模拟含气量检测系统的工作条件,搭建测试试验台,通过Hypermesh仿真分析试验台结构的可靠性. 通过密闭性能试验与气体状态试验,验证系统理论设计的正确性. 重复性试验的数据表明,含气量检测系统的原理正确性、测试精度与理论分析相符,满足要求. 通过温度实验,探究温度对航空液压油含气量的影响. 完成应用在C919型号铁鸟台的飞机液压系统的试验,样机成功通过上海飞机设计研究院的验收.

[1] 欧阳小平, 杨华勇, 郭生荣, 等. 现代飞机液压技术[M]. 杭州:浙江大学出版社, 2016.
[2] 路甬祥. 液压气动技术手册[M]. 北京:机械工业出版社, 2002.
[3] ARNDT R E A. Cavitation in fluid machinery and hydraulic structures[J]. Fluid Mechanics, 1981, 13(13):273-326.
[4] BLAKE J R, HOOTON M C, ROBINSON P B, et al. Collapsing cavities, toroidal bubbles and jet impact[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1997, 355(1724):537-550.
[5] FOX F E, HERZFELD K F. Gas bubbles with organic skin as cavitation nuclei[J]. The Journal of the Acoustical Society of America, 1954, 26(6):984-989.
[6] 陈懿. 空气对液压系统的影响及其预防措施[J]. 船舶设计通讯, 1999(1):53-54 CHEN Yi. Influence of air on hydraulic system and its preventive measures[J]. Journal of Ship Design, 1999(1):53-54
[7] 朱志坚, 米特哈特, 陈宏伟, 等. 气泡对液压系统的危害及防范措施[J]. 液压与气动, 2002(1):36-38 ZHU Zhi-jian, MITHATE, CHEN Hong-wei, et al. The harm of air bubble on hydraulic system and preventive measures[J]. Chinese Hydraulic and Pneumatics, 2002(1):36-38
[8] 赵天菲. 飞机液压含气量检测系统研究[D]. 杭州:浙江大学, 2016. ZHAO Tian-fei. Research on the air content measurement system of aircraft hydraulics[D]. Hangzhou:Zhejiang University, 2016.
[9] 徐巨华. 油液体积弹性模量对电液伺服系统动态特性影响研究[D]. 杭州:浙江大学, 2013. XU Ju-hua. Research on dynamic characteristics of servo system with oil bulk modulus[D]. Hangzhou:Zhejiang University, 2013.
[10] 刚立, 许唯临, 邓军, 等. 含气量对液体黏度的影响[J]. 科学技术与工程, 2004(5):394-396 GANG Li, XU Wei-lin, DENG Jun, et al. Effect of air concentration on viscosity[J]. Science Technology and Engineer, 2004(5):394-396
[11] 李流远. 油液含气量对液压系统的影响[J]. 液压与气动, 2001, 1(1):27-28 LI Liu-yuan. The influence of air content in oil in the hydraulic system[J]. Chinese Hydraulic and Pneumatics, 2001, 1(1):27-28
[12] 张丽芳. 空气对液压系统的影响及控制[J]. 宿州教育学院学报, 2006(1):107-108 ZHANG Li-fang. Impact of air on hydraulic system and its control[J]. Journal of Suzhou Education Institute, 2006(1):107-108
[13] OUYANG X P, FAN B Q, YANG H Y, et al. Research on air content estimation of tributyl phosphate hydraulic fluids:a novel approach based on the vacuum method[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(2):024503.
[14] MORTIMER R G, ROBERT G. Physical chemistry[M]. 3rd ed. Burlington:Elsevier, 2008.
[15] 孔洁. 油液含气量检测设备的设计与实现[J]. 科技资讯, 2014(19):73 KONG Jie. Design and realization of air content detection equipment for oil[J]. Science and Technology Information, 2014(19):73
[16] 欧阳小平, 范伯骞, 丁硕, 等. 带有容积、压力和泄漏检测功能的弹簧增压闭式液压油箱:中国, CN104863909A[P]. 2016-03-02. OUYANG Xiao-ping, FAN Bo-qian, DING Shuo, et al. Spring pressurized closed hydraulic tank with volume, pressure and leak detection:China, CN104863909A[P]. 2016-03-02.
[17] 孙华, 严正泽, 刘馥英. 润滑油空气释放性能的研究[J]. 石油学报(石油加工), 1992(4):99-105 SUN Hua, YAN Zheng-ze, LIU Fu-ying. Study on air release performance of lube oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1992(4):99-105
[18] 王辉, 吴祖望. 汽轮机油的发展趋势[J]. 润滑油, 2005, 20(1):12-16 WANG Hui, WU Zu-wang. The new development of turbine oil[J]. Lubricating Oil, 2005, 20(1):12-16
[19] 王宁, 朱元琪. 润滑油泡沫性能的研究[J]. 石油炼制与化工, 2000, 31(3):9-12 WANG Ning, ZHU Yuan-qi. Research on foaming performance of lube oil[J]. Petroleum Processing and Petrochemicals, 2000, 31(3):9-12
[20] 陈惠卿. 液压油产品标准的发展[J]. 设备管理与维修, 2004(9):34-38 CHEN Hui-qing. Development of hydraulic oil product standards[J]. Plant Maintenance Engineering, 2004(9):34-38
[21] 竹中利夫. 液压流体力学[M]. 北京:科学出版社, 1980.

[1] WEI Jian-hua, SUN Chun-geng, FANG Jin-hui, WANG Gang. Adaptive robust motion control of composite material hydraulic press[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 925-933.
[2] WANG Chao, GONG Guo-fang, YANG Hua-yong, ZHOU Jian-jun, DUAN Li-wen, ZHANG Ya-kun. NSVR based predictive analysis of cutterhead torque for hard rock TBM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 479-486.
[3] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 8-15.
[4] SUN Wei, DU Jia-nan, WANG Lin-tao, MA Hong-hui. High speed and low impact control method for electro-hydraulic system of segment erector in tunnel boring machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1948-1958.
[5] GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1937-1947.
[6] SHI Jian-peng, QUAN Long, ZHANG Xiao-gang, XIONG Xiao-yan. Velocity and position characteristics of excavator's boom by separate meter-in and meter-out compound control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1797-1807.
[7] OUYANG Xiao-ping, LIU Yu-long, XUE Zhi-quan, GUO Sheng-rong, ZHOU Qing-he, YANG Hua-yong. null[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1361-1367.
[8] LIN Hao-Ling, XIE Hai-Bei, YANG Hua-Yong, et al. Key technologies on monopropellant-powered hydraulic free piston engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 872-876.