Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1993-2001    DOI: 10.3785/j.issn.1008-973X.2021.10.022
    
High-precision compensation and calibration method for four-quadrant analog sun sensor
Hua-jian DENG1,2(),Hao WANG1,2,*(),Ben-dong WANG1,2,Zhong-he JIN1,2
1. Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Micro-Nano Satellite Research, Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1493KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A high-precision error compensation method was proposed for the four-quadrant analog sun sensor in order to improve the accuracy of the micro-nano satellite attitude determination system. A completely automated calibration process was designed. The process of measuring the photogenerated current of the four-quadrant silicon photocell was analyzed, and the projection relationship of the incident sunlight was modeled to extract the main error sources. All aspects of the process were considered, and the current measurement errors in each channel were separately corrected. The errors caused by machining and installation errors and the errors caused by neglecting the thickness of the optical mask were compensated, which formed a complete compensation method. The experimental results showed that machining and installation errors were the main error sources, and the influence of the error caused by neglecting the thickness of the optical mask was slightly greater than that of the current measurement error. The average accuracy before compensation was 3.072° (1σ) within ±40° of incident angle, and the average accuracy was 0.177° (1σ) after compensation. The accuracy after calibration of the existing method was 0.5°(1σ). The calibration accuracy of the proposed method was improved by about three times compared with the existing method. A set of automated calibration test method for the whole process was designed aiming at the production process of calibration test, which obviously improved the calibration efficiency and was suitable for mass application.



Key wordsfour-quadrant      sun sensor      error analysis      compensation      calibration     
Received: 05 December 2020      Published: 27 October 2021
CLC:  V 241  
Fund:  国家杰出青年基金资助项目(61525403)
Corresponding Authors: Hao WANG     E-mail: denghuajian@zju.edu.cn;roger@zju.edu.cn
Cite this article:

Hua-jian DENG,Hao WANG,Ben-dong WANG,Zhong-he JIN. High-precision compensation and calibration method for four-quadrant analog sun sensor. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1993-2001.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.022     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1993


四象限模拟太阳敏感器的高精度补偿标定方法

为了提高微纳卫星的定姿精度,针对四象限模拟太阳敏感器提出高精度误差补偿方法,设计完整的自动标定流程. 分析四象限硅光电池片光生电流的测量过程,将太阳光入射后的投影关系进行建模,提取主要误差源. 综合考虑各环节,对各路电流测量误差进行单独矫正,对机械加工与安装误差和忽略遮光罩厚度导致误差进行补偿,形成了完备的补偿方法. 实验结果表明,机械加工与安装误差为主要误差源,忽略遮光罩厚度导致误差的影响略大于电流测量误差的影响. 应用该方法在±40°视场范围内补偿前平均精度为3.072°(1σ),补偿后平均精度为0.177°(1σ),现有其他方法标定后精度为0.5°(1σ),提出方法的精度提升了约3倍. 针对标定测试工序,设计全流程自动化标定测试方法,效率明显提高,适合大批量应用.


关键词: 四象限,  太阳敏感器,  误差分析,  补偿,  标定 
Fig.1 Schematic diagram of measurement process of four-quadrant analog sun sensor
Fig.2 Measurement process of analog sun sensor photocurrent
Fig.3 Influence of response coefficient of silicon photodiode 1 on precision of analog sun sensor
Fig.4 Schematic diagram of sunlight incidence from third quadrant (α = 25°, β = 25°)
Fig.5 Influence of optical mask thickness on precision of analog sun sensor
Fig.6 Calibration and parameter injection process of analog sun sensor
Fig.7 Calibration system of sun sensor
Fig.8 Block diagram of sun sensor calibration system
Fig.9 Data distribution of calibration points and evaluation points
Fig.10 Deviation angle distribution of analog sun sensor
补偿方法 ${{\Delta }}\bar \theta $/(°) σΔθ /(°)
完整补偿方法 0.177 0.025
忽略电流测量误差 0.215 0.034
忽略遮光罩厚度 0.350 0.065
忽略机械加工与安装误差 1.296 0.525
补偿前 3.072 0.514
Tab.1 Accuracy evaluation of analog sun sensor after calibration
Fig.11 Accuracy evaluation of analog sun sensor after calibration
[1]   WALKER A, KUMAR M. CubeSat attitude determination using low-cost sensors and magnetic field time derivative[C]// 55th AIAA Aerospace Sciences Meeting. Benevento: AIAA, 2017: 166.
[2]   费云, 蒙涛, 金仲和 皮纳卫星姿控系统分层式故障检测[J]. 浙江大学学报: 工学版, 2020, 54 (4): 824- 832
FEI Yun, MENG Tao, JIN Zhong-he Hierarchical fault detection for nano-pico satellite attitude control system[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 824- 832
[3]   MAZZINI L. Flexible spacecraft dynamics, control and guidance: technologies by Giovanni Campolo [M]. Rome: Springer, 2015: 295-299.
[4]   ANTONELLO A, OLIVIERI L, FRANCESCONI A Development of a low-cost sun sensor for nanosatellites[J]. Acta Astronautica, 2018, 144: 429- 436
doi: 10.1016/j.actaastro.2018.01.003
[5]   WEI M, XING F, YOU Z A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies[J]. Mechanical Systems and Signal Processing, 2017, 82: 56- 67
doi: 10.1016/j.ymssp.2016.05.004
[6]   ABHILASH M, KUMAR S, SANDYA S, et al. Implementation of the MEMS-based dual-axis sun sensor for nano satellites[C]// 2014 IEEE Metrology for Aerospace. Benevento: IEEE, 2014: 190-195.
[7]   FAN Q, PENG J, GAO X Micro digital sun sensor with linear detector[J]. Review of Scientific Instruments, 2016, 87 (7): 75003
doi: 10.1063/1.4958696
[8]   韩柯, 金仲和, 王昊 基于太阳能电池板的皮卫星最优姿态确定算法[J]. 浙江大学学报: 工学版, 2010, 44 (9): 1719- 1723
HAN Ke, JIN Zhong-he, WANG Hao Optimal attitude determination method for pico-satellite using solar panels[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (9): 1719- 1723
doi: 10.3785/j.issn.1008-973X.2010.09.015
[9]   王俊, 王昊, 应鹏, 等 四象限差动式模拟太阳敏感器设计[J]. 传感技术学报, 2012, 25 (12): 1659- 1663
WANG Jun, WANG Hao, YING Peng, et al Design of four-quadrant analog sun sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25 (12): 1659- 1663
doi: 10.3969/j.issn.1004-1699.2012.12.007
[10]   MIAO J, LIANG T. New kind of self-powered wireless digital sun sensor[C]// IEEE 3rd Information Technology and Mechatronics Engineering Conference. Chongqing: IEEE, 2017: 276-281.
[11]   KANJI S. Mechanical aspects of design, analysis, and testing for the NORSAT-1 microsatellite[D]. Toronto: University of Toronto, 2015.
[12]   DENG S, MENG T, WANG H, et al Flexible attitude control design and on-orbit performance of the ZDPS-2 satellite[J]. Acta Astronautica, 2017, 130: 147- 161
doi: 10.1016/j.actaastro.2016.10.020
[13]   DIAZ A, GARRIDO R, SOTO-BERNAL J A filtered sun sensor for solar tracking in HCPV and CSP systems[J]. IEEE Sensors Journal, 2018, 19 (3): 917- 925
[14]   FAN Q, ZHANG G, LI J, et al Error modeling and calibration for encoded sun sensors[J]. Sensors, 2013, 13 (3): 3217- 3231
doi: 10.3390/s130303217
[15]   YOUSEFIAN P, DURALI M, RASHIDIAN B, et al Fabrication, characterization, and error mitigation of non-flat sun sensor[J]. Sensors and Actuators A: Physical, 2017, 261: 243- 251
doi: 10.1016/j.sna.2017.05.022
[16]   冯邈, 于晓洲, 白博, 等 低成本小型无线自动太阳敏感器设计与实现[J]. 系统工程与电子技术, 2019, 41 (8): 1852- 1857
FENG Miao, YU Xiao-zhou, BAI Bo, et al Design and realization of low-cost micro wireless automatic sun sensor[J]. Systems Engineering and Electronics, 2019, 41 (8): 1852- 1857
doi: 10.3969/j.issn.1001-506X.2019.08.24
[17]   王春宇, 梁鹤, 吕政欣, 等 双轴模拟式太阳敏感器的误差源分析[J]. 空间控制技术与应用, 2016, 42 (1): 43- 47
WANG Chun-yu, LIANG He, LV Zheng-xin, et al Analysis of error sources existing in dual-axial analog sun sensor[J]. Aerospace Control and Application, 2016, 42 (1): 43- 47
doi: 10.3969/j.issn.1674-1579.2016.01.008
[18]   徐晓丹, 王建福, 种荟萱, 等 双轴模拟式太阳敏感器测试链误差分析及修正[J]. 中国空间科学技术, 2019, 39 (1): 19- 24
XU Xiao-dan, WANG Jian-fu, CHONG Hui-xuan, et al Error source analysis and compensation in test chain for dual-axial analog sun sensor[J]. Chinese Space Science and Technology, 2019, 39 (1): 19- 24
[19]   樊巧云, 张广军, 魏新国 内外参数精确建模的太阳敏感器标定[J]. 北京航空航天大学学报, 2011, 37 (10): 1293- 1297
FAN Qiao-yun, ZHANG Guang-jun, WEI Xin-guo Sun sensor calibration based on exact modeling with intrinsic and extrinsic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37 (10): 1293- 1297
[1] Bo-qun LI,Jia-qiang YANG. Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 607-612.
[2] Jian-bo WU,Jun LI,Cheng-gan ZHENG,Liang CHENG. Comprehensive error modeling and compensation of a large gantry automatic fiber placement machine[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 398-407.
[3] Hao-ran MA,Ya-bin DING. Calibration method of laser displacement sensor based on binocular vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1634-1642.
[4] Yang LI,Rong QI,Ming-guang DAI. Linear active disturbance rejection control with adjustable compensation factor applied for outer voltage control of inverter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1279-1288.
[5] Yuan CHEN,Deng-hui GUO,Li-xia TIAN. Design and modeling of wire-driven rigid-flexible parallel mechanism for wave compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 810-822.
[6] Ming-yang YUAN,Qi-yue XU,Jiong DING,Shu-liang YE. Differential power compensation’s adiabatic calorimetry method based on scanning heating mode[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2100-2107.
[7] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.
[8] Ying-jie GUO,Fan GU,Hui-yue DONG,Hai-jin WANG. Prediction and compensation of robot deformation under pressure force of pressure foot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1457-1465.
[9] Jian-ming XU,Zhi-peng ZHAO,Jian-wei DONG. Free-force control of flexible robot joint system without sensors on link side[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1256-1263.
[10] Chen-tao MAO,Zhang-wei CHEN,Xiang ZHANG,Hong-fei ZU. Kinematic calibration for robots based on relative accuracy[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1316-1324.
[11] Zheng-rui TAO,Jia-qiang DANG,Jing-yang XU,Qing-long AN,Ming CHEN,Li WANG,Fei REN. High-precision calibration methods of thickness measurement for insulation coation on curved surface based on eddy current[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1218-1227.
[12] Hai-tong WU,Jin ZHOU,Li JI. Unbalance compensation of magnetically suspended rotor based on single phase coordinate transformation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 963-971.
[13] Zhi HUANG,Zhen-jie JIA,Tao DENG,Yong-chao LIU,Li DU. Thermal error compensation of static pressure turntable based on support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1594-1601.
[14] Zhi-jing LI,Jing-hua YE,Hai-bin WU. Robot collision detection with convolution torque observer and friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 427-434.
[15] HUANG Zi-liang, OUYANG Xiao-ping, ZHAO Tian-fei, ZHANG Jian-bo, ZHOU Liang, YANG Hua-yong. Characteristic of air content detection system for aircraft hydraulics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 158-165.