Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 607-612    DOI: 10.3785/j.issn.1008-973X.2022.03.020
    
Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor
Bo-qun LI(),Jia-qiang YANG*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1786KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An adaptive incremental deadbeat predictive current control algorithm was proposed to solve the problem of static current error caused by parameter mismatch in conventional deadbeat predictive current control of surface-mounted permanent magnet synchronous motor (SPMSM). The incremental prediction equation was established based on the reference voltage increment, the reference current increment and the actual current increment, and the relationship that the stator resistance is far less than the ratio of stator inductance to sampling time was also combined to eliminate stator resistance and permanent magnet flux. Then, the current errors were combined with adaptive weights based on the error of rotor mechanical angular speed, and the combination was taken to adaptively compensate the reference voltage increment in the incremental prediction equation, so as to reduce the prediction error. Experimental results show that the proposed algorithm has higher capacity of eliminating static current error than the conventional algorithm under the set conditions of parameter mismatch. When the speed changes, the dynamic performance of the current inner loop controlled by the proposed algorithm is better than that of the conventional algorithm, which effectively improves the dynamic performance of the speed outer loop.



Key wordssurface-mounted permanent magnet synchronous motor(SPMSM)      deadbeat predictive current control      parameter mismatch      incremental predictive equation      adaptive compensation     
Received: 21 April 2021      Published: 29 March 2022
CLC:  TM 351  
Fund:  国家自然科学基金资助项目(51777191);浙江省自然科学基金资助项目(LCZ19E070001)
Corresponding Authors: Jia-qiang YANG     E-mail: 2284088765@qq.com;yjq1998@163.com
Cite this article:

Bo-qun LI,Jia-qiang YANG. Adaptive incremental deadbeat predictive current control algorithm for surface-mounted permanent magnet synchronous motor. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 607-612.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.020     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/607


用于SPMSM的自适应增量式无差拍预测电流控制算法

针对表贴式永磁同步电机(SPMSM)传统无差拍预测电流控制在参数失配时易扩大电流静差的问题,提出自适应增量式无差拍预测电流控制算法. 基于给定电压增量、给定电流增量以及实际电流增量建立增量式预测方程,结合定子电阻远小于定子电感与采样时间之比,消去定子电阻和永磁体磁链. 基于转子机械角速度误差对电流误差进行自适应加权组合,用该组合对增量式预测方程中的给定电压增量进行自适应补偿以减少预测误差. 实验结果表明,所提算法在设置的参数失配情况中,电流静差消除能力均高于传统算法;当转速变化时,在所提算法控制下电流内环的动态性能优于传统算法,转速外环的动态性能有效提高.


关键词: 表贴式永磁同步电机(SPMSM),  无差拍预测电流控制,  参数失配,  增量式预测方程,  自适应补偿 
Fig.1 Block diagram of conventional deadbeat predictive current control system
Fig.2 Graph of adaptive adjustment function $ {{f}}_{\text{A}} $
Fig.3 Experimental bench of surface-mounted permanent magnet synchronous motor
参数 数值 参数 数值
额定电压/V 36 转动惯量/(kg· $ {\text{m}}^{\text{2}} $) 5.88×10?6
额定电流/A 4.6 定子电阻/Ω 0.375
额定功率/W 100 定子电感/H 0.001
额定转速/(r·min?1) 3000 永磁体磁链/Wb 0.010 4
额定转矩/(N·m) 0.318 极对数 4
Tab.1 Parameters of surface-mounted  permanent  magnetsynchronous motor
Fig.4 Waveform of q axis current of motor with deadbeat predictive current control parameter mismatch
Fig.5 Waveform of q axis current of motor with adaptive incremental deadbeat predictive current control parameter mismatch
参数失配情况 $E_q^{\rm{I}}/A$
DPCC AIDPCC
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$ 0.254 8 0.019 9
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$ 0.053 0 0.019 9
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{5}{\textit{ψ} }_{\text{f} }$ 1.438 1 0.019 9
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{0.2}{\textit{ψ} }_{\text{f} }$ 0.314 8 0.019 9
${{R} }_{{0} }{=}{5}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{5}{\textit{ψ} }_{\text{f} }$${{L} }_{{0} }{=}{5}{{L} }_{\text{s} }$ 0.150 0 0.102 3
${{R} }_{{0} }{=}{0.2}{{R} }_{\text{s} }$${\textit{ψ} }_{{0} }{=}{0.2}{\textit{ψ} }_{\text{f} }$${{L} }_{{0} }{=}{0.2}{{L} }_{\text{s} }$ 1.318 0 0.032 6
Tab.2 Comparison of q axis static current error with parameter mismatch of two algorithms
Fig.6 Waveform of state variable of motor with load during acceleration and deceleration
[1]   陈同有, 杨家强, 郑仕达, 等 基于余弦函数的无传感器永磁风机IF起动平滑切换方法[J]. 浙江大学学报:工学版, 2020, 54 (8): 1572- 1577
CHEN Tong-you, YANG Jia-qiang, ZHENG Shi-da, et al IF starting smooth switching method of sensorless permanent magnet fan based on cosine function[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1572- 1577
[2]   LIU B, ZHOU B, NI T Principle and stability analysis of an improved self-sensing control strategy for surface-mounted PMSM drives using second-order generalized integrators[J]. IEEE Transactions on Energy Conversion, 2018, 33 (1): 126- 136
doi: 10.1109/TEC.2017.2738025
[3]   ORTEGA A J P, XU L Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations[J]. IEEE Transactions on Energy Conversion, 2016, 31 (4): 1634- 1644
doi: 10.1109/TEC.2016.2598649
[4]   PEI G, LIU J, GAO X, et al Deadbeat predictive current control for SPMSM at low switching frequency with moving horizon estimator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (1): 345- 353
doi: 10.1109/JESTPE.2019.2960579
[5]   YUAN X, ZHANG S, ZHANG C Improved model predictive current control for SPMSM drives with parameter mismatch[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 852- 862
doi: 10.1109/TIE.2019.2901648
[6]   YUAN X, ZHANG S, ZHANG C, et al Improved model predictive current control for SPMSM drives using current update mechanism[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (3): 1938- 1948
doi: 10.1109/TIE.2020.2973880
[7]   WANG G, YANG M, NIU L, et al. Static error elimination algorithm for PMSM predictive current control [C]// Proceedings of the 33rd Chinese Control Conference. Nanjing: IEEE, 2014: 7691-7696.
[8]   YAO Y, HUANG Y, PENG F, et al An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (12): 10145- 10155
doi: 10.1109/TIE.2019.2960755
[9]   ZHANG X, HOU B, MEI Y Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electronics, 2017, 32 (5): 3818- 3834
doi: 10.1109/TPEL.2016.2592534
[10]   JIANG Y, XU W, MU C, et al Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 251- 263
doi: 10.1109/TVT.2017.2752778
[11]   ZHANG Y, XU D, LIU J, et al Performance improvement of model-predictive current control of permanent magnet synchronous motor drives[J]. IEEE Transactions on Industry Applications, 2017, 53 (4): 3683- 3695
doi: 10.1109/TIA.2017.2690998
[12]   王伟华, 肖曦, 丁有爽 永磁同步电机改进电流预测控制[J]. 电工技术学报, 2013, 28 (3): 50- 55
WANG Wei-hua, XIAO Xi, DING You-shuang An improved predictive current control method for permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2013, 28 (3): 50- 55
doi: 10.3969/j.issn.1000-6753.2013.03.007
[1] Yu WANG,Zhi-yong HAO,Kang ZHENG,Xu ZHENG,Yi QIU. Analysis of electromagnetic noise of permanent magnet synchronous motor based on multi-directional electromagnetic force[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2286-2293.
[2] Tong-you CHEN,Jia-qiang YANG,Shi-da ZHENG,De-zhi MENG,Min KANG. IF starting smooth switching method of sensorless permanent magnet fan based on cosine function[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1572-1577.
[3] Ke XU,Hong-liang YING,Su-rong HUANG,Qi ZHANG. Electromagnetic noise reduction of permanent magnet synchronous motor by step-skewed rotor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2248-2254.
[4] NING Yin hang, LIU Chuang, GAN Xing ye. Electromagnetic design and analysis of two stage hybrid excitation synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 519-526.
[5] ZHANG Han ni, ZHANG Qi, HUANG Su rong, ZHANG Zhou yun. Temperature calculation for high power density permanent magnet motor with consideration of heat transfer in bearings[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2410-2417.
[6] CHEN Liang liang,ZHU Chang sheng,JIANG Ke jian. Rotor strength analysis for high speed surface mounted permanent magnet synchronous motor with filled blocks between magnetic poles[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1738-1748.
[7] ZUO Shu-guang, ZHANG Guo-hui, WU Xu-dong, GAO Li-hua, SHEN Jian. Analysis of electromagnetic force in wheel-drive PMSM with stator incline eccentricity[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 901-907.
[8] CHEN Liang-liang, ZHU Chang-sheng,WANG Meng. Strength analysis for thermal carbon-fiber retaining rotor in high-speed permanent magnet machine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 162-172.
[9] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. Optimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 173-180.
[10] ZUO Shu-guang, ZHANG Guo-hui, WU Xu-dong, GAO Li-hua, SHEN Jian. nalysis of electromagnetic force in Wheel-drive PMSM with stator incline eccentricity[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 1-7.
[11] HAN Hui-wen, ZHU Chang-sheng. Subdomain model for armature reaction flied of surface-mounted permanent magnet machines[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1682-1689.
[12] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. ptimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1-8.
[13] XUE Shao-shen, XU Hai-ping, FANG Cheng, NIU Wei-kun, XUE Shan. Multiphase permanent magnet synchronous motor harmonic plane control based on carrier technology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2080-2086.
[14] WANG Bao-jun, BI Liu-xin, CHEN Liang-liang, YANG Ping-xi, ZHU Chang-sheng. Strength analysis of a surface mounted high speed permanent magnetic machine rotor with carbon fiber bandage[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2101-2110.
[15] CAI Jiong-jiong, LU Qin-fen, LIU Xiao, YE Yun-yue. Step skewing method for thrust ripple reduction of PMLSM[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1122-1127.