Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 613-621    DOI: 10.3785/j.issn.1008-973X.2022.03.021
    
Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution
Ying LI1,2(),Guan-xiong WANG1,Wei YAN1,Ying-ge ZHAO2,Chong-lei MA1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
2. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China
Download: HTML     PDF(1127KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved sparse grid collocation method based on sensitivity analysis was proposed to quantify the uncertainty, aiming at the uncertainty problem of conductivity distribution in electrical impedance tomography (EIT) research. The four-layer concentric circular head model was taken for simulation, and the variance-based global sensitivity analysis method was used to analyze the model. The results of sensitivity analysis show that the conductivity changes of each layer have different effects on the output potential. Furthermore, the influence of the input variables of each dimension in the model on the output results were considered, the traditional sparse grid collocation method was improved. The input variables of each dimension were assigned with different accuracy levels in the improved method, the implicit expression of the EIT model was transformed into an explicit expression and the high-precision substitute model was constructed. Compared with the Monte Carlo (MC) method, polynomial chaos expansion (PCE) method and traditional sparse grid collocation method, the results show that the improved method can obtain the more accurate quantified results with less calculation cost. The simulation results were given to verify the efficiency of the proposed improved method.



Key wordselectrical impedance tomography (EIT)      uncertainty quantification      Monte Carlo (MC) method      polynomial chaos expansion (PCE) method      sensitivity analysis method      sparse grid collocation method     
Received: 19 April 2021      Published: 29 March 2022
CLC:  TM 152  
Fund:  河北省自然科学基金资助项目(E2015202050)
Cite this article:

Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/613


改进的稀疏网格配点法对EIT电导率分布的不确定性量化

针对电阻抗成像(EIT)研究中电导率分布的不确定性问题,提出基于灵敏度分析的改进稀疏网格配点法以量化不确定性. 以4层同心圆头模型为算例,采用基于方差的全局灵敏度分析法对其进行分析,发现各层电导率的变化对输出电位的影响程度各不相同. 考虑模型中各维输入变量对输出结果不同程度的影响,改进传统稀疏网格配点法. 改进方法对各维输入变量配置不同的精度水平,将EIT模型的隐式表达式转化为显式表达式,构造出高精度的替代模型. 与蒙特卡洛(MC)法、混沌多项式展开(PCE)法和传统稀疏网格配点法相比,改进方法能够以更少的计算成本获得较高精度的量化结果. 仿真结果验证了所提改进方法的高效性.


关键词: 电阻抗成像(EIT),  不确定性量化,  蒙特卡洛(MC)法,  混沌多项式展开(PCE)法,  灵敏度分析法,  稀疏网格配点法 
Fig.1 Four-layer concentric circular head model
部位 r/cm σ/(S·m?1)
大脑层 8.00 0.33
脑脊液层 8.50 1.00
颅骨层 9.20 0.42×10?2
头皮层 10.00 0.33
Tab.1 Radius values and conductivity values of each layer in four-layer concentric circular head model
Fig.2 Potential distribution diagram of each electrode on boundary
Fig.3 Convergence diagram of potential mean of electrode point 1 and sample number of MC method
部位 S1 S2 S3 S4
头皮层 0.723 989 0.577 689 0.561 464 0.625 605
颅骨层 0.271 172 0.413 325 0.430 142 0.369 696
脑脊液层 0.000 169 0.000 221 0.000 287 0.000 327
大脑层 0.002 858 0.004 513 0.004 987 0.003 958
Tab.2 Sensitivity index of conductivity of each layer of tissue
Fig.4 Probability density function distribution diagram of potential of electrode point 1
Fig.5 Probability density function distribution diagram of potential of electrode point 2
Fig.6 Probability density function distribution diagram of potential of electrode point 3
Fig.7 Probability density function distribution diagram of potential of electrode point 4
UQ方法 1号电极 2号电极 3号电极 4号电极 N
$\mu/{\rm{mV}}$ s $\mu/{\rm{mV}}$ s $\mu/{\rm{mV}}$ s $\mu/{\rm{mV}}$ s
MC 28.892 9 2.407 8 22.401 0 1.818 2 18.842 3 1.535 2 16.400 6 1.359 2 100 000
PCE 28.867 3 2.332 2 22.374 0 1.745 4 18.809 5 1.445 7 16.372 0 1.273 1 512
稀疏网格配点法,K = [4,4,4,4] 28.880 7 2.348 0 22.394 6 1.764 6 18.826 5 1.474 1 16.389 0 1.296 3 401
稀疏网格配点法,K = [5,5,5,5] 28.884 6 2.367 2 22.402 2 1.776 9 18.833 7 1.485 4 16.394 3 1.305 8 1 105
改进稀疏网格配点法,K = [3,3,4,4] 28.878 3 2.347 9 22.390 6 1.762 7 18.824 2 1.470 2 16.386 1 1.295 6 385
改进稀疏网格配点法,K = [3,2,4,5] 28.882 2 2.361 2 22.395 6 1.765 5 18.831 7 1.482 2 16.393 2 1.301 0 845
Tab.3 Statistical information of each electrode potential under different uncertainty quantification methods
UQ方法 ${\varepsilon _1}$ ${\varepsilon _2}$ ${\varepsilon _3}$
稀疏网格配点法,K = [4,4,4,4] 0.012 2 0.059 8 0.062 3
稀疏网格配点法,K = [5,5,5,5] 0.008 3 0.040 6 0.016 0
改进稀疏网格配点法,K = [3,3,4,4] 0.014 6 0.059 9 0.066 3
改进稀疏网格配点法,K = [3,2,4,5] 0.010 7 0.046 6 0.020 6
PCE 0.025 6 0.075 6 0.079 1
Tab.4 Error values of uncertainty quantification methods
[1]   徐灿华, 董秀珍 生物电阻抗断层成像技术及其临床研究进展[J]. 高电压技术, 2014, 40 (12): 3738- 3745
XU Can-hua, DONG Xiu-zhen Advancements in electrical impedance tomography and its clinical applications[J]. High Voltage Engineering, 2014, 40 (12): 3738- 3745
[2]   RYMARCZYK T, SIKORA J, ADAMKIEWICZ P, et al. Analysis and monitoring of flood embankments through image reconstruction based on electrical impedance tomography [C]// Proceedings of the 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering(ISEF). Nancy: IEEE, 2019: 1-2.
[3]   VENKATRATNAM C, NAGI F Spatial resolution in electrical impedance tomography: a topical review[J]. Journal of Electrical Bioimpedance, 2017, 8 (1): 66- 78
doi: 10.5617/jeb.3350
[4]   KUWAHARA Y, NOZAKI A, FUJII K Large scale analysis of complex permittivity of breast cancer in microwave band[J]. Advances in Breast Cancer Research, 2020, 9 (4): 101- 109
doi: 10.4236/abcr.2020.94008
[5]   ZURBUCHEN U, POCH F, GEMEINHARDT O, et al Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors[J]. Acta Radiologica, 2017, 58 (2): 164- 169
doi: 10.1177/0284185116639765
[6]   OH T I, JEONG W C, MCEWAN A, et al Feasib-ility of magnetic resonance electrical impedance tomography (MREIT) conductivity imaging to evaluate brain abscess lesion: in vivo canine model[J]. Journal of Magnetic Resonance Imaging, 2013, 38 (1): 189- 197
doi: 10.1002/jmri.23960
[7]   YERO D D, GONZáLEZ F G, TROYEN D V, et al Dielectric properties of ex vivo porcine liver tissue characterized at frequencies between 5 and 500 kHz when heated at different rates[J]. IEEE Transactions on Biomedical Engineering, 2018, 65 (11): 2560- 2568
doi: 10.1109/TBME.2018.2807981
[8]   MCINTYRE C C, MORI S, SHERMAN D L, et al Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus[J]. Clinical Neurophysiology, 2004, 115 (3): 589- 595
doi: 10.1016/j.clinph.2003.10.033
[9]   WANG J Y, ZHENG X Q Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142 (7): 070801
doi: 10.1115/1.4047179
[10]   汤涛, 周涛 不确定性量化的高精度数值方法和理论[J]. 中国科学: 数学, 2015, 45 (7): 891- 928
TANG Tao, ZHOU Tao Recent developments in high order numerical methods for uncertainty quantification[J]. Scientia Sinica: Mathematica, 2015, 45 (7): 891- 928
doi: 10.1360/N012014-00218
[11]   HELTON J C, DAVIS F J Latin hypercube samp-ling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering and System Safety, 2003, 81 (1): 23- 69
doi: 10.1016/S0951-8320(03)00058-9
[12]   GHANEM R G, SPANOS P D. Stochastic finite elements: a spectral approach [M]. New York: Springer, 1991: 45-66.
[13]   XIU D B, HESTHAVEN J S High-order colloca-tion methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005, 27 (3): 1118- 1139
doi: 10.1137/040615201
[14]   NOBILE F, TEMPONE R, WEBSTER C G A sparse grid stochastic collocation method for partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2008, 46 (5): 2309- 2345
doi: 10.1137/060663660
[15]   HYV?NEN N, LEINONEN M Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography[J]. SIAM/ASA Journal on Uncertainty Quantification, 2015, 3 (1): 998- 1019
doi: 10.1137/140999050
[16]   SUN X, LEE E, CHOI J Quantification of measurement error effects on conductivity reconstruction in electrical impedance tomography[J]. Inverse Problems in Science and Engineering, 2020, 28 (12): 1669- 1693
doi: 10.1080/17415977.2020.1762595
[17]   KOLEHMAINEN V, LASSAS M, OLA P The inverse conductivity problem with an imperfectly known boundary[J]. SIAM Journal on Applied Mathematics, 2005, 66 (2): 365- 383
doi: 10.1137/040612737
[18]   BOYLE A, CRABB M G, JEHL M, et al Methods for calculating the electrode position Jacobian for impedance imaging[J]. Physiological Measurement, 2017, 38 (3): 555- 574
doi: 10.1088/1361-6579/aa5b78
[19]   NISSINEN A, HEIKKINEN L M, KOLEHMAINEN V, et al Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography[J]. Measurement Science and Technology, 2009, 20 (10): 105504
doi: 10.1088/0957-0233/20/10/105504
[20]   ABDEDOU A, SOULAIMANI A A non-intrusive B-splines Bézier elements-based method for uncertainty propagation[J]. Computer Method in Applied Mechanics and Engineering, 2019, 345: 774- 804
doi: 10.1016/j.cma.2018.10.047
[21]   WAN H P, REN W X, TODD M D Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics[J]. Mechanical Systems and Signal Processing, 2020, 142: 106732
doi: 10.1016/j.ymssp.2020.106732
[22]   SMOLYAK S A Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Reports of the Academy of Sciences of the USSR, 1963, 4: 240- 243
[23]   熊芬芬, 杨树兴, 刘宇, 等. 工程概论不确定性分析方法 [M]. 北京: 科学出版社, 2015: 169-174.
[24]   肖思男, 吕震宙, 王薇 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学 力学 天文学, 2018, 48 (1): 014601
XIAO Si-nan, LV Zhen-zhou, WANG Wei A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2018, 48 (1): 014601
doi: 10.1360/SSPMA2016-00516
[25]   NI F, NIJHUIS M, NGUYEN P H Variance-based global sensitivity analysis for power systems[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1670- 1682
doi: 10.1109/TPWRS.2017.2719046
No related articles found!