|
|
New energy ramp event prediction based on time series decomposition and error correction |
Lin TONG1( ),Zheng GUAN2,*( ),Li-wei WANG1,Wen-tao YANG1,Yang YAO1 |
1. School of Physics and Electrical Engineering, Liupanshui Normal University, Liupanshui 553004, China 2. School of Information Engineering, Yunnan University, Kunming 650091, China |
|
|
Abstract A ramp prediction model based on principal component analysis, time series decomposition and correction of long short-term memory (LSTM) network was proposed, in order to improve the accuracy of ramp prediction of new energy represented by wind power and photovoltaic power. In order to fully consider the time series characteristics of power, the power was decomposed into period, trend and residual by the time series decomposition method, and the trend and residual prediction model based on LSTM was established by combining the principal components of several characteristic factors, to realize the mapping relationship between the time characteristics of power and the principal components of influencing factors. Based on the preliminary prediction of trend and residual terms by LSTM, an error correction algorithm was introduced to calculate the dynamic error of the fitting prediction model and construct a new non-stationary time series to obtain the trend and residual predicted values with better accuracy. The final power prediction was obtained by fusing the trend, residual terms and the period value obtained by using the naive method. Combined with the definition of wind power and photovoltaic ramp event, the proposed model was used to predict the wind power and photovoltaic ramp event respectively. Experimental results show that the proposed model has better accuracy than other forecasting methods in direct power prediction and indirect ramp event prediction, and it can provide a more reliable basis for power grid dispatching.
|
Received: 12 July 2021
Published: 03 March 2022
|
|
Corresponding Authors:
Zheng GUAN
E-mail: tonglin0123@foxmail.com;gz_627@sina.com
|
基于时序分解与误差修正的新能源爬坡事件预测
为了提高以风电、光伏为代表的新能源的爬坡预测的准确性,提出基于主成分分析、时序分解与修正长短期记忆(LSTM)网络预测误差的爬坡预测模型. 为了充分考虑功率的时序特性,采用时序分解方法将功率分解为周期、趋势和余项,结合多个特征因素的主成分建立基于LSTM的趋势和余项预测模型,实现功率的时间特征与影响因素主成分的映射关系刻画. 在采用LSTM对趋势和余项进行初步预测的基础上,引入误差修正算法计算拟合预测模型的动态误差并构建新的非平稳时间序列,获得准度性更佳的趋势和余项预测值. 通过加法模型融合趋势、余项以及利用朴素法获得的周期,得到最终预测功率. 结合风电和光伏爬坡事件定义,运用所提模型分别进行风电和光伏爬坡预测. 实验结果表明,与其他预测方法相比,所提模型在功率直接预测和爬坡事件间接预测上均具有更优的精度,能够为电网调度提供更可靠的依据.
关键词:
主成分分析,
长短期记忆网络,
误差修正,
新能源爬坡,
时序分解
|
|
[1] |
SANCHEZ-SUTIL F, CANO O, HERNANDEZ J C, et al Development and calibration of an open source, low-cost power smart meter prototype for PV household-prosumers[J]. Electronics, 2019, (8): 878
|
|
|
[2] |
王铮, 王伟胜, 刘纯, 等 基于风过程方法的风电功率预测结果不确定性估计[J]. 电网技术, 2013, 37 (1): 242- 247 WANG Zheng, WANG Wei-sheng, LIU Chun, et al Uncertainty estimation of wind power prediction result based on wind process method[J]. Power System Technology, 2013, 37 (1): 242- 247
|
|
|
[3] |
GALLEGO-CASTILLO C, GARCIA-BUSTAMANTE E, CUERVA A, et al Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data[J]. IET Renewable Power Generation, 2015, 9 (8): 867- 875
doi: 10.1049/iet-rpg.2014.0457
|
|
|
[4] |
HURTT J, BAKER K Sensitivity analysis of photovoltaic system design parameters to passively mitigate ramp rates[J]. IEEE Journal of Photovoltaics, 2021, 11 (2): 545- 551
doi: 10.1109/JPHOTOV.2020.3045679
|
|
|
[5] |
KARABACAK M, FERNÁNDEZ-RAMÍREZ L M, KAMAL T, et al A new hill climbing maximum power tracking control for wind turbines with inertial effect compensation[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (11): 8545- 8556
doi: 10.1109/TIE.2019.2907510
|
|
|
[6] |
OUYANG T, ZHA X, QIN L, et al Prediction of wind power ramp events based on residual correction[J]. Renewable Energy, 2019, 136: 781- 792
doi: 10.1016/j.renene.2019.01.049
|
|
|
[7] |
ARIAS-CASTRO E, KLEISSL J, LAVE M A poisson model for anisotropic solar ramp rate correlations[J]. Solar Energy, 2014, 101: 192- 202
doi: 10.1016/j.solener.2013.12.028
|
|
|
[8] |
ZHENG H Y, KUSIAK A Prediction of wind farm power ramp rates: a data-mining approach[J]. Journal of Solar Energy Engineering, 2009, 131 (3): 031011
doi: 10.1115/1.3142727
|
|
|
[9] |
ZHANG G, LIU H, ZHANG J, et al Wind power prediction based on variational mode decomposition multi-frequency combinations[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (2): 281- 288
doi: 10.1007/s40565-018-0471-8
|
|
|
[10] |
吴振威, 蒋小平, 马会萌, 等 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31 (1): 58- 61 WU Zhen-wei, JIANG Xiao-ping, MA Hui-meng, et al Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern Electric Power, 2014, 31 (1): 58- 61
doi: 10.3969/j.issn.1007-2322.2014.01.011
|
|
|
[11] |
HABIB A, ABBASSI R, ARISTIZÁBAL A J, et al Forecasting model for wind power integrating least squares support vector machine, singular spectrum analysis, deep belief network, and locality-sensitive hashing[J]. Wind Energy, 2020, 23 (2): 235- 257
doi: 10.1002/we.2425
|
|
|
[12] |
朱乔木, 李弘毅, 王子琪, 等 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41 (12): 3797- 3802 ZHU Qiao-mu, LI Hong-yi, WANG Zi-qi, et al Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41 (12): 3797- 3802
|
|
|
[13] |
CHU Y H, PEDRO H T C, LI M Y, et al Real-time forecasting of solar irradiance ramps with smart image processing[J]. Solar Energy, 2015, 114: 91- 104
doi: 10.1016/j.solener.2015.01.024
|
|
|
[14] |
刘芳, 汪震, 刘睿迪, 等 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报:工学版, 2021, 55 (3): 594- 600 LIU Fang, WANG Zhen, LIU Rui-di, et al Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 594- 600
|
|
|
[15] |
LIU Z F, LI L L, TSENG M L, et al Prediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine model[J]. Journal of Cleaner Production, 2020, 248: 119272
doi: 10.1016/j.jclepro.2019.119272
|
|
|
[16] |
ZHU W L, ZHANG L, YANG M, et al Solar power ramp event forewarning with limited historical observations[J]. IEEE Transactions on Industry Applications, 2019, 55 (6): 5621- 5630
doi: 10.1109/TIA.2019.2934935
|
|
|
[17] |
TRUEWIND A. AWS Truewind’s final report for the Alberta forecasting pilot project [R]. New York: Wind Power Forecasting PILOT Project, 2008.
|
|
|
[18] |
FERREIRA C, GAMA J, MATIAS L, et al. A survey on wind power ramp forecasting [R]. Chicago: Argonne National Laboratory (ANL), 2011.
|
|
|
[19] |
韩学山, 王心仪, 杨明, 等 新能源爬坡事件综述及展望[J]. 山东大学学报:工学版, 2021, 51 (5): 53- 62+75 HAN Xue-shan, WANG Xin-yi, YANG Ming, et al Review and prospect of renewable energy ramp events[J]. Journal of Shandong University: Engineering Science, 2021, 51 (5): 53- 62+75
|
|
|
[20] |
李文书, 邹涛涛, 王洪雁, 等 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报:工学版, 2020, 54 (8): 1613- 1619 LI Wen-shu, ZOU Tao-tao, WANG Hong-yan, et al Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1613- 1619
|
|
|
[21] |
CLEVELAND R, CLEVELAND W, MCRAE J STL: a seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6 (1): 3- 33
|
|
|
[22] |
刘雪, 刘锦涛, 李佳利, 等 基于季节分解和长短期记忆的北京市鸡蛋价格预测[J]. 农业工程学报, 2020, 36 (9): 331- 340 LIU Xue, LIU Jin-tao, LI Jia-li, et al Egg price forecasting in Beijing market using seasonal-trend decomposition procedures based on seasonal decomposition and long-short term memory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (9): 331- 340
doi: 10.11975/j.issn.1002-6819.2020.09.038
|
|
|
[23] |
张东英, 代悦, 张旭, 等 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42 (6): 1783- 1792 ZHANG Dong-ying, DAI Yue, ZHANG Xu, et al Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42 (6): 1783- 1792
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|