Computer Technology, Information Engineering |
|
|
|
|
Ultra wide band radar gait recognition based on slow-time segmentation |
Jin-hai ZHOU1( ),Yi-chuan WANG1,Jing-ping TONG1,Shi-yi ZHOU1,Xiang-fei WU2 |
1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China 2. Hangzhou Magnet Intelligent Technology Co. Ltd, Hangzhou 310000, China |
|
|
Abstract An algorithm for free space gait recognition using ultra wide band (UWB) radar was proposed in order to solve the problems of privacy leakage caused by cameras and intrusiveness caused by wearable devices in the indoor monitoring, and to relax the restriction on walking conditions in traditional radar gait recognition algorithms. The radar gait signal reflected from the walking target is segmented along the slow-time axis to generate a series of sub-signals. For each sub-signal, the Fourier transform is performed on range bins to obtain a range-Doppler map. These range-Doppler maps temporally correlate each other. The features of a set of range-Doppler maps belonging to the same gait signal are extracted using the histogram of oriented gradient algorithm, and the resulting features are modeled by long short-term memory networks to obtain the final classification result of the target identity. The experiment was carried out in an empty indoor environment, and the accuracy of gait classification for four individuals was 79.10%. Results show that the proposed algorithm has a certain discrimination ability to different individual’s gait in free space.
|
Received: 20 July 2019
Published: 10 March 2020
|
|
基于慢时间分割的超宽带雷达步态识别
为了解决室内监控时摄像头的隐私泄露问题和可穿戴设备的侵入性等问题,同时针对传统雷达步态识别算法中的行走条件限制问题,提出基于超宽带(UWB)雷达的自由空间步态识别算法.算法沿慢时间轴对目标行走动作产生的雷达步态信号进行分割产生一系列子信号;对于每个子信号,在距离单元上分别进行傅里叶变换得到距离-多普勒图像,这些距离-多普勒图像前后之间存在时序关系;利用方向梯度直方图算法对属于同一个步态信号的一组距离-多普勒图像进行特征提取,采用长短期记忆网络对得到的特征进行时序建模以获取目标身份分类结果. 实验在空旷的室内环境中进行,对四人的步态分类准确率为79.10%. 结果表明所提出的算法对自由空间中不同个体的步态具有一定的区分能力.
关键词:
超宽带UWB雷达,
自由空间,
慢时间,
分割,
方向梯度直方图,
长短期记忆网络
|
|
[1] |
WANG X Intelligent multi-camera video surveillance: a review[J]. Pattern Recognition Letters, 2013, 34 (1): 3- 19
doi: 10.1016/j.patrec.2012.07.005
|
|
|
[2] |
YANG C C, HSU Y L A review of accelerometry-base-dwearable motion detectors for physical activity mon-itoring[J]. Sensors, 2010, 10 (8): 7772- 7788
doi: 10.3390/s100807772
|
|
|
[3] |
AMIN M G, ZHANG Y D, AHMAD F, et al Radar signal processing for elderly fall detection: the future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33 (2): 71- 80
doi: 10.1109/MSP.2015.2502784
|
|
|
[4] |
AMIN M G. Radar for indoor monitoring: detection, classification, and assessment [M]. Boca Raton: CRC Press, 2017.
|
|
|
[5] |
CHEN V C, LI F, HO S S, et al Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21
|
|
|
[6] |
PARASHAR K N, OVENEKE M C, RYKUNOV M, et al. Micro-Doppler feature extraction using convolutional auto-encoders for low latency target classification [C]// 2017 IEEE Radar Conference. Seattle: IEEE, 2017: 1739-1744.
|
|
|
[7] |
KIM Y, LING H Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 (5): 1328- 1337
doi: 10.1109/TGRS.2009.2012849
|
|
|
[8] |
JOKANOVIC B, AMIN M Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54 (1): 180- 189
|
|
|
[9] |
SSYFIOGLU M S, OZBAYOGLU A M, GURBUZ S Z Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (4): 1709- 1723
doi: 10.1109/TAES.2018.2799758
|
|
|
[10] |
MURO A, GARCIA B, MENDEZ A Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications[J]. Sensors, 2014, 14 (2): 3362- 3394
doi: 10.3390/s140203362
|
|
|
[11] |
SAHO K, FUJIMOTO M, MASUGI M, et al Gait classification of young adults, elderly non-fallers, and elderly fallers using micro-doppler radar signals: simulation study[J]. IEEE Sensors Journal, 2017, 17 (8): 2320- 2321
doi: 10.1109/JSEN.2017.2678484
|
|
|
[12] |
TIVIVE F H C, BOUZERDOUM A, AMIN M G A humangait classification method based on radar Doppler spectrograms[J]. EURASIP Journal on Advances in Signal Processing, 2010, 389716
|
|
|
[13] |
SEIFERT A K, AMIN M, ZOUBIR A M Toward unobtrusive in-home gait analysis based on radar micro-doppler signatures[J]. IEEE Transactions on Biomedical Engineering, 2019, 66 (9): 2629- 2640
|
|
|
[14] |
BARREET T W History of ultra wideband commun-ications and radar[J]. Microwave Journal, 2001, 44 (2): 22- 46
|
|
|
[15] |
费元春. 超宽带雷达理论与技术[M]. 北京: 国防工业出版社, 2010.
|
|
|
[16] |
张群, 胡健, 罗迎, 等 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7 (5): 5- 21 ZHANG Qun, HU Jian, LUO Ying, et al Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7 (5): 5- 21
|
|
|
[17] |
TSAO J, PORRAT D, TSE D Prediction and modeling for the time-evolving ultra-wide band channel[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3): 340- 356
doi: 10.1109/JSTSP.2007.906662
|
|
|
[18] |
COHEN L. Time-frequency analysis: theory and applications [M]. Upper Saddle River: Prentice Hall, 1995.
|
|
|
[19] |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social lstm: human trajectory prediction in crowded spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 961-971.
|
|
|
[20] |
VENUGOPALAN S, HENDRICKS L A, MOONEY R, et al. Improving lstm-based video description with linguistic knowledge mined from text [J/OL]. [2016-11-29]. (2019-06-25). https://arxiv.org/abs/1604.01729.
|
|
|
[21] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Computer Society, 2005: 886-893.
|
|
|
[22] |
SHIN H C, ROTH H R, GAO M, et al Deep conv-olutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35 (5): 1285- 1298
doi: 10.1109/TMI.2016.2528162
|
|
|
[23] |
陈羽中, 方明月, 郭文忠, 等 基于小波变换与差分自回归移动平均模型的微博话题热度预测[J]. 模式识别与人工智能, 2015, 28 (7): 586- 594 CHEN Yu-zhong, FANG Ming-yue, GUO wen-zhong, et al Topic popularity prediction of microblog based on wavelet transformation and ARIMA[J]. Pattern Recognition and Artificial Intelligence, 2015, 28 (7): 586- 594
|
|
|
[24] |
NARASIMHAN V, DANECEK P, SCALLY A, et al BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32 (11): 1749- 1751
doi: 10.1093/bioinformatics/btw044
|
|
|
[25] |
CHEN K, ZHOU Y, DAI F. A LSTM-based method for stock returns prediction: a case study of China stock market [C]// 2015 IEEE International Conference on Big Data. Santa Clara: IEEE, 2015: 2823-2824.
|
|
|
[26] |
NGUYEN A, KANOULAS D, MURATORE L, et al. Translating videos to commands for robotic manipulation with deep recurrent neural networks [C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2018: 1-9.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|